RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1997, Volume 61, Issue 1, Pages 113–140 (Mi izv107)  

This article is cited in 10 scientific papers (total in 10 papers)

Homogenization of non-stationary Stokes equations with viscosity in a perforated domain

G. V. Sandrakov

M. V. Lomonosov Moscow State University

Abstract: Theorems are proved about the asymptotic behaviour of solutions of an initial boundary-value problem for non-stationary Stokes equations in a periodic perforated domain with a small period $\varepsilon$. The viscosity coefficient $\nu$ of the equations is assumed to be a positive parameter satisfying one of the following three conditions: $\nu/\varepsilon^2 \to \infty,1,0$ as $\varepsilon\to 0$. We also consider the case of degenerate Stokes equations with zero viscosity coefficient and the case of Navier–Stokes equations when the viscosity coefficient is not too small.

DOI: https://doi.org/10.4213/im107

Full text: PDF file (2400 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1997, 61:1, 113–141

Bibliographic databases:

MSC: Primary 35B27; Secondary 76D05
Received: 27.04.1995

Citation: G. V. Sandrakov, “Homogenization of non-stationary Stokes equations with viscosity in a perforated domain”, Izv. RAN. Ser. Mat., 61:1 (1997), 113–140; Izv. Math., 61:1 (1997), 113–141

Citation in format AMSBIB
\Bibitem{San97}
\by G.~V.~Sandrakov
\paper Homogenization of non-stationary Stokes equations with viscosity in a~perforated domain
\jour Izv. RAN. Ser. Mat.
\yr 1997
\vol 61
\issue 1
\pages 113--140
\mathnet{http://mi.mathnet.ru/izv107}
\crossref{https://doi.org/10.4213/im107}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1440315}
\zmath{https://zbmath.org/?q=an:0893.35095}
\transl
\jour Izv. Math.
\yr 1997
\vol 61
\issue 1
\pages 113--141
\crossref{https://doi.org/10.1070/IM1997v061n01ABEH000107}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997XR83300005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0039941168}


Linking options:
  • http://mi.mathnet.ru/eng/izv107
  • https://doi.org/10.4213/im107
  • http://mi.mathnet.ru/eng/izv/v61/i1/p113

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. E. Pastukhova, “Substantiation of the Darcy law for a porous medium with condition of partial adhesion”, Sb. Math., 189:12 (1998), 1871–1888  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Sandrakov G.V., “Influence of viscosity on acoustic phenomena in porous media”, Russian Journal of Numerical Analysis and Mathematical Modelling, 13:3 (1998), 245–264  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    3. Pastukhova S.E., “Homogenization of the stationary Stokes system in a perforated domain with a mixed condition on the boundary of cavities”, Differential Equations, 36:5 (2000), 755–766  mathnet  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    4. Khan K., Schwarzenberg S.J., Sharp H., Greenwood D., Weisdorf-Schindele S., “Role of serology and routine inflammatory laboratory tests in childhood bowel disease”, Inflammatory Bowel Diseases, 8:5 (2002), 325–329  crossref  isi  scopus  scopus
    5. Jason R. Looker, Steven L. Carnie, “The hydrodynamics of an oscillating porous sphere”, Phys Fluids, 16:1 (2004), 62  crossref  isi  scopus  scopus
    6. G. V. Sandrakov, “The influence of viscosity on oscillations in some linearized problems of hydrodynamics”, Izv. Math., 71:1 (2007), 97–148  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. G. V. Sandrakov, “Multiphase homogenized diffusion models for problems with several parameters”, Izv. Math., 71:6 (2007), 1193–1252  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. G. V. Sandrakov, “On some properties of solutions of Navier-Stokes equations with oscillating data”, J. Math. Sci. (N. Y.), 143:4 (2007), 3377–3385  mathnet  crossref  mathscinet
    9. Prakash J., Sekhar G.P.R., Kohr M., “Faxen's law for arbitrary oscillatory Stokes flow past a porous sphere”, Archives of Mechanics, 64:1 (2012), 41–63  mathscinet  zmath  isi
    10. Zhendong Luo, Fei Teng, Zhenhua Di, “A POD-based reduced-order finite difference extrapolating model with fully second-order accuracy for non-stationary Stokes equations”, International Journal of Computational Fluid Dynamics, 2014, 1  crossref  mathscinet  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:266
    Full text:90
    References:59
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019