|
This article is cited in 7 scientific papers (total in 7 papers)
On the connected components of moduli of real polarized K3-surfaces
V. V. Nikulinab a Steklov Mathematical Institute, Russian Academy of Sciences
b Department of Mathematical Sciences, University of Liverpool
Abstract:
We complete the investigations in [11] on the classification of connected components of moduli of real polarized K3-surfaces. In particular, we show that this classification is closely related to some classical problems in number theory: the classification of binary indefinite lattices and the representation of integers as sums of two squares. As an application, we use recent results in [13] to completely classify real polarized K3-surfaces that are deformations of real hyperelliptically polarized K3-surfaces. This is important because real hyperelliptically polarized K3-surfaces can be constructed explicitly.
Keywords:
deformation, real $K3$ surface, moduli, connected component, hyperelliptic curve, linear system, real rational surface, ellipsoid, hyperboloid, polarization
DOI:
https://doi.org/10.4213/im1143
Full text:
PDF file (599 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2008, 72:1, 91–111
Bibliographic databases:
UDC:
512.774.5+511.334
MSC: 14H45, 14J26, 14J28, 14P25 Received: 12.07.2006
Citation:
V. V. Nikulin, “On the connected components of moduli of real polarized K3-surfaces”, Izv. RAN. Ser. Mat., 72:1 (2008), 99–122; Izv. Math., 72:1 (2008), 91–111
Citation in format AMSBIB
\Bibitem{Nik08}
\by V.~V.~Nikulin
\paper On the connected components of moduli of real polarized K3-surfaces
\jour Izv. RAN. Ser. Mat.
\yr 2008
\vol 72
\issue 1
\pages 99--122
\mathnet{http://mi.mathnet.ru/izv1143}
\crossref{https://doi.org/10.4213/im1143}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2394973}
\zmath{https://zbmath.org/?q=an:1144.14025}
\elib{https://elibrary.ru/item.asp?id=10336923}
\transl
\jour Izv. Math.
\yr 2008
\vol 72
\issue 1
\pages 91--111
\crossref{https://doi.org/10.1070/IM2008v072n01ABEH002393}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000254303700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41549114981}
Linking options:
http://mi.mathnet.ru/eng/izv1143https://doi.org/10.4213/im1143 http://mi.mathnet.ru/eng/izv/v72/i1/p99
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Finashin S., Kharlamov V., “Chirality of Real Non-Singular Cubic Fourfolds and Their Pure Deformation Classification”, Rev. Mat. Complut.
-
Finashin S., Kharlamov V., “On the deformation chirality of real cubic fourfolds”, Compos. Math., 145:5 (2009), 1277–1304
-
V. A. Krasnov, “Maximal intersections of three real quadrics”, Izv. Math., 75:3 (2011), 569–587
-
V. A. Krasnov, “Real Two-Dimensional Intersections of a Quadric by a Cubic”, Math. Notes, 90:4 (2011), 509–516
-
V. A. Krasnov, “Real $M$-triquadrics”, Izv. Math., 77:1 (2013), 30–43
-
V. A. Krasnov, “On a classical correspondence of real K3 surfaces”, Izv. Math., 82:4 (2018), 662–693
-
V. A. Krasnov, “Real Kummer surfaces”, Izv. Math., 83:1 (2019), 65–103
|
Number of views: |
This page: | 315 | Full text: | 109 | References: | 44 | First page: | 6 |
|