Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1989, Volume 53, Issue 6, Pages 1135–1182 (Mi izv1152)  

This article is cited in 3 scientific papers (total in 3 papers)

Modular representations of the Galois group of a local field, and a generalization of the Shafarevich conjecture

V. A. Abrashkin


Abstract: Let $M\Gamma^{\mathrm{cris}}(\mathbf Q_p)$ be the category of crystalline representations of the Galois group of the field of fractions of the ring of Witt vectors of an algebraically closed field of characteristic $p>0$. The author describes the subfactors annihilated by multiplication by $p$ of the representations from $M\Gamma^{\mathrm{cris}}(\mathbf Q_p)$ arising from filtered modules of filtration length $<p$, and proves a generalization of the Shafarevich conjecture that there do not exist abelian schemes over $\mathbf Z$: if $X$ is a smooth proper scheme over the ring of integers of the field $\mathbf Q$ (respectively $\mathbf Q(\sqrt{-1} )$, $\mathbf Q(\sqrt{-3} )$, $\mathbf Q(\sqrt{-5})$ ), then the Hodge numbers of the complex manifold $X_{\mathbf C}$ satisfy $h^{ij}=0$ for $i\ne j$ and $i+j\leqslant3$ (respectively $i+j\leqslant2$).
Bibliography: 17 titles.

Full text: PDF file (5494 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1990, 35:3, 469–518

Bibliographic databases:

UDC: 512.7
MSC: Primary 11S25, 14F30; Secondary 11G10
Received: 01.03.1988

Citation: V. A. Abrashkin, “Modular representations of the Galois group of a local field, and a generalization of the Shafarevich conjecture”, Izv. Akad. Nauk SSSR Ser. Mat., 53:6 (1989), 1135–1182; Math. USSR-Izv., 35:3 (1990), 469–518

Citation in format AMSBIB
\Bibitem{Abr89}
\by V.~A.~Abrashkin
\paper Modular representations of the Galois group of a~local field, and a~generalization of the Shafarevich conjecture
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1989
\vol 53
\issue 6
\pages 1135--1182
\mathnet{http://mi.mathnet.ru/izv1152}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1039960}
\zmath{https://zbmath.org/?q=an:0733.14008}
\transl
\jour Math. USSR-Izv.
\yr 1990
\vol 35
\issue 3
\pages 469--518
\crossref{https://doi.org/10.1070/IM1990v035n03ABEH000715}


Linking options:
  • http://mi.mathnet.ru/eng/izv1152
  • http://mi.mathnet.ru/eng/izv/v53/i6/p1135

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Abrashkin, “The image of the Galois group for some crystalline representations”, Izv. Math., 63:1 (1999), 1–36  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Abrashkin, V, “Characteristic p Analogue of Modules with Finite Crystalline Height”, Pure and Applied Mathematics Quarterly, 5:1 (2009), 469  isi
    3. Shin Hattori, “On a ramification bound of torsion semi-stable representations over a local field”, Journal of Number Theory, 129:10 (2009), 2474  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:357
    Full text:104
    References:36
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021