|
This article is cited in 6 scientific papers (total in 6 papers)
Del Pezzo surfaces with log-terminal singularities. III
V. V. Nikulin
Abstract:
Let $Z$ be a del Pezzo surface with log-terminal singularities and $\sigma\colon Y\to Z$ a minimal resolution of singularities. Then the Picard number of $Y$ satisfies $\rho(Y)<N(e)$, where $e$ is the maximal multiplicity of the singularities of $Z$ and $N$ a certain function of $e$.
Bibliography: 18 titles.
Full text:
PDF file (2003 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1990, 35:3, 657–675
Bibliographic databases:
UDC:
512.774
MSC: Primary 14J10, 14J26; Secondary 14J05, 14J17, 14J25, 14J28, 14E30, 51F15 Received: 16.09.1988
Citation:
V. V. Nikulin, “Del Pezzo surfaces with log-terminal singularities. III”, Izv. Akad. Nauk SSSR Ser. Mat., 53:6 (1989), 1316–1334; Math. USSR-Izv., 35:3 (1990), 657–675
Citation in format AMSBIB
\Bibitem{Nik89}
\by V.~V.~Nikulin
\paper Del~Pezzo surfaces with log-terminal singularities.~III
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1989
\vol 53
\issue 6
\pages 1316--1334
\mathnet{http://mi.mathnet.ru/izv1158}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1039966}
\zmath{https://zbmath.org/?q=an:0711.14018}
\transl
\jour Math. USSR-Izv.
\yr 1990
\vol 35
\issue 3
\pages 657--675
\crossref{https://doi.org/10.1070/IM1990v035n03ABEH000721}
Linking options:
http://mi.mathnet.ru/eng/izv1158 http://mi.mathnet.ru/eng/izv/v53/i6/p1316
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Cycle of papers
This publication is cited in the following articles:
-
V. V. Nikulin, “Del Pezzo surfaces with log-terminal singularities”, Math. USSR-Sb., 66:1 (1990), 231–248
-
V. V. Nikulin, “Algebraic three-folds and the diagram method”, Math. USSR-Izv., 37:1 (1991), 157–189
-
A. A. Borisov, L. A. Borisov, “Singular toric Fano varieties”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 277–283
-
Yu. G. Prokhorov, V. V. Shokurov, “The first main theorem on complements: from global to local”, Izv. Math., 65:6 (2001), 1169–1196
-
A. B. Verevkin, Yu. G. Prokhorov, “The Riemann–Roch theorem on surfaces with log terminal singularities”, J. Math. Sci., 140:2 (2007), 200–205
-
Hideo Kojima, Takeshi Takahashi, “Normal del Pezzo surfaces of rank one with log canonical singularities”, Journal of Algebra, 360 (2012), 53
|
Number of views: |
This page: | 229 | Full text: | 59 | References: | 25 | First page: | 1 |
|