|
This article is cited in 16 scientific papers (total in 16 papers)
Subgroups and homology of free products of profinite groups
O. V. Mel'nikov
Abstract:
The author defines a new construction of free product
$G=\mathop{ŁARGE{$*$}}^{\mathfrak K}_TG_t$ in the variety $\mathfrak K$ of profinite groups of the family $\{G_t\mid t\in T\}$ of groups in $\mathfrak K$, continuously indexed by points of the profinite space $T$. In the case where $\mathfrak K$ is closed relative to extensions with Abelian kernels, a number of assertions about the homology groups of $G$ are obtained. Using homological methods, a theorem of Kurosh type on decomposition of an arbitrary pro-$p$-subgroup in $G$ into a free pro-$p$-product is proved, under a certain separability condition on $G$.
Bibliography: 19 titles.
Full text:
PDF file (3027 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1990, 34:1, 97–119
Bibliographic databases:
UDC:
512.546.37
MSC: Primary 20E06, 20E18, 20E07; Secondary 20J05 Received: 06.05.1987
Citation:
O. V. Mel'nikov, “Subgroups and homology of free products of profinite groups”, Izv. Akad. Nauk SSSR Ser. Mat., 53:1 (1989), 97–120; Math. USSR-Izv., 34:1 (1990), 97–119
Citation in format AMSBIB
\Bibitem{Mel89}
\by O.~V.~Mel'nikov
\paper Subgroups and homology of free products of profinite groups
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1989
\vol 53
\issue 1
\pages 97--120
\mathnet{http://mi.mathnet.ru/izv1163}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=992980}
\zmath{https://zbmath.org/?q=an:0684.20019|0671.20025}
\transl
\jour Math. USSR-Izv.
\yr 1990
\vol 34
\issue 1
\pages 97--119
\crossref{https://doi.org/10.1070/IM1990v034n01ABEH000607}
Linking options:
http://mi.mathnet.ru/eng/izv1163 http://mi.mathnet.ru/eng/izv/v53/i1/p97
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
P. A. Zalesskii, “The structure of the congruence kernel for $\mathrm{SL}_2$ in the case of a global field of positive characteristic”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 489–495
-
P. A. Zalesskii, “Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic”, Izv. Math., 59:3 (1995), 499–516
-
V. M. Tsvetkov, “On some 2-extension of the field $\mathbb Q$ of rational numbers”, J. Math. Sci. (New York), 95:2 (1999), 2161–2163
-
Ido Efrat, “Pro-pGalois Groups of Algebraic Extensions of”, Journal of Number Theory, 64:1 (1997), 84
-
Herfort W., Zalesskii P., “Cyclic Extensions of Free Pro-P Groups”, J. Algebra, 216:2 (1999), 511–547
-
Yu.L.. Ershov, “ON FREE PRODUCTS OF ABSOLUTE GALOIS GROUPS. II”, Communications in Algebra, 29:9 (2001), 3773
-
O. V. Mel'nikov, “Aspherical pro-$p$-groups”, Sb. Math., 193:11 (2002), 1639–1670
-
W Herfort, P. A Zalesskii, “Profinite HNN-constructions”, jgth, 10:6 (2007), 799
-
Peter Symonds, “On cohomology isomorphisms of groups”, Journal of Algebra, 313:2 (2007), 802
-
Luis Ribes, “Pro-p groups that act on profinite trees”, jgth, 11:1 (2008), 75
-
Peter Symonds, “Double Coset Formulas for Profinite Groups”, Communications in Algebra, 36:3 (2008), 1059
-
D. H. Kochloukova, P. A. Zalesskii, “On pro-p analogues of limit groups via extensions of centralizers”, Math Z, 2009
-
Wolfgang Herfort, Pavel A. Zalesskii, “A virtually free pro-p need not be the fundamental group of a profinite graph of finite groups”, Arch Math, 2009
-
D.H. Kochloukova, P.A. Zalesskii, “Fully residually free pro-p groups”, Journal of Algebra, 324:4 (2010), 782
-
Dessislava Kochloukova, Pavel Zalesskii, “Subgroups and homology of extensions of centralizers of pro-pgroups”, Math. Nachr, 2014, n/a
-
D.H.. KOCHLOUKOVA, P.A.. ZALESSKII, “Subdirect products of pro-p groups”, Math. Proc. Camb. Phil. Soc, 2015, 1
|
Number of views: |
This page: | 249 | Full text: | 87 | References: | 29 | First page: | 1 |
|