RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1988, Volume 52, Issue 4, Pages 712–739 (Mi izv1201)  

This article is cited in 8 scientific papers (total in 8 papers)

Algebraic constructions of certain integrable equations

O. I. Bogoyavlenskii


Abstract: For differential equations in an arbitrary associative algebra, invariant constructions are presented that are connected with automorphisms of the algebra and admit a Lax representation. A Lax representation is found for a certain Hamiltonian integrodifferential equation, along with explicit formulas for a countable set of first integrals of it.
Bibliography: 13 titles

Full text: PDF file (3094 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1989, 33:1, 39–65

Bibliographic databases:

UDC: 517.91
MSC: Primary 45K05, 35Q20; Secondary 34C35, 35J10, 58F05
Received: 09.03.1988

Citation: O. I. Bogoyavlenskii, “Algebraic constructions of certain integrable equations”, Izv. Akad. Nauk SSSR Ser. Mat., 52:4 (1988), 712–739; Math. USSR-Izv., 33:1 (1989), 39–65

Citation in format AMSBIB
\Bibitem{Bog88}
\by O.~I.~Bogoyavlenskii
\paper Algebraic constructions of certain integrable equations
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1988
\vol 52
\issue 4
\pages 712--739
\mathnet{http://mi.mathnet.ru/izv1201}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=966981}
\zmath{https://zbmath.org/?q=an:0816.58019|0682.58024}
\transl
\jour Math. USSR-Izv.
\yr 1989
\vol 33
\issue 1
\pages 39--65
\crossref{https://doi.org/10.1070/IM1989v033n01ABEH000812}


Linking options:
  • http://mi.mathnet.ru/eng/izv1201
  • http://mi.mathnet.ru/eng/izv/v52/i4/p712

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. I. Bogoyavlenskii, “A theorem on two commuting automorphisms, and integrable differential equations”, Math. USSR-Izv., 36:2 (1991), 263–279  mathnet  crossref  mathscinet  zmath  adsnasa
    2. O. I. Bogoyavlenskii, “Breaking solitons in $2+1$-dimensional integrable equations”, Russian Math. Surveys, 45:4 (1990), 1–89  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. O. I. Bogoyavlenskii, “Breaking solitons. VI. Extension of systems of hydrodynamic type”, Math. USSR-Izv., 39:2 (1992), 959–973  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. A. S. Piskunov, “A (3+1)-dimensional equation admitting a Lax representation”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 225–233  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    5. Theoret. and Math. Phys., 92:3 (1992), 1024–1031  mathnet  crossref  mathscinet  zmath  isi
    6. Yuri B. Suris, “Integrable discretizations of the Bogoyavlensky lattices”, J Math Phys (N Y ), 37:8 (1996), 3982  crossref  mathscinet  zmath  adsnasa  elib
    7. Vassilios G. Papageorgiou, Frank W. Nijhoff, “On some integrable discrete-time systems associated with the Bogoyavlensky lattices”, Physica A: Statistical Mechanics and its Applications, 228:1-4 (1996), 172  crossref
    8. Yoshiaki Itoh, “A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka–Volterra system”, J. Phys. A: Math. Theor, 42:2 (2009), 025201  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:327
    Full text:107
    References:41
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019