|
This article is cited in 19 scientific papers (total in 19 papers)
Exceptional bundles on surfaces with a moving anticanonical class
A. L. Gorodentsev
Abstract:
The author studies the properties of exceptional coherent sheaves on algebraic surfaces $S$ with $\operatorname{dim}H^0(-\mathscr K_S)\geqslant2$ and describes a method for constructing infinite families of such sheaves, based on the technique developed here of reconstructions of the exceptional objects of a derived category.
Bibliography: 12 titles.
Full text:
PDF file (2343 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1989, 33:1, 67–83
Bibliographic databases:
UDC:
513.6
MSC: Primary 14F05, 18F15, 55R10; Secondary 14J10, 55R65 Received: 20.07.1987
Citation:
A. L. Gorodentsev, “Exceptional bundles on surfaces with a moving anticanonical class”, Izv. Akad. Nauk SSSR Ser. Mat., 52:4 (1988), 740–757; Math. USSR-Izv., 33:1 (1989), 67–83
Citation in format AMSBIB
\Bibitem{Gor88}
\by A.~L.~Gorodentsev
\paper Exceptional bundles on surfaces with a~moving anticanonical class
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1988
\vol 52
\issue 4
\pages 740--757
\mathnet{http://mi.mathnet.ru/izv1202}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=966982}
\zmath{https://zbmath.org/?q=an:0736.14003|0664.14011}
\transl
\jour Math. USSR-Izv.
\yr 1989
\vol 33
\issue 1
\pages 67--83
\crossref{https://doi.org/10.1070/IM1989v033n01ABEH000813}
Linking options:
http://mi.mathnet.ru/eng/izv1202 http://mi.mathnet.ru/eng/izv/v52/i4/p740
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. N. Rudakov, “Exceptional vector bundles on a quadric”, Math. USSR-Izv., 33:1 (1989), 115–138
-
A. N. Tyurin, “Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with $p_g>0$”, Math. USSR-Izv., 33:1 (1989), 139–177
-
D. Yu. Nogin, “Spirals of period 4 and equations of Markov type”, Math. USSR-Izv., 37:1 (1991), 209–226
-
B. V. Karpov, “Semistable sheaves on a two-dimensional quadric, and Kronecker modules”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 33–66
-
S. Yu. Ziuzina, “Constructibility of exceptional pairs of vector bundles on a quadric”, Russian Acad. Sci. Izv. Math., 42:1 (1994), 163–171
-
S. A. Kuleshov, D. O. Orlov, “Exceptional sheaves on del Pezzo surfaces”, Russian Acad. Sci. Izv. Math., 44:3 (1995), 479–513
-
Eric Zaslow, “Solitons and helices: The search for a math-physics bridge”, Comm Math Phys, 175:2 (1996), 337
-
B. V. Karpov, D. Yu. Nogin, “Three-block exceptional collections over Del Pezzo surfaces”, Izv. Math., 62:3 (1998), 429–463
-
A. L. Gorodentsev, S. A. Kuleshov, “Helix theory”, Mosc. Math. J., 4:2 (2004), 377–440
-
B. V. Karpov, “Monads of Stable Non-bundles on $\mathbb P^2$”, Proc. Steklov Inst. Math., 246 (2004), 142–145
-
Meltzer H., “Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines”, Mem. Am. Math. Soc., 171:808 (2004), III+
-
Aaron Bergman, “Undoing orbifold quivers”, J High Energy Phys, 2007:3 (2007), 112
-
L. COSTA, R. M. MIRÓ–ROIG, “Geometric collections and Castelnuovo–Mumford regularity”, Math Proc Camb Phil Soc, 143:3 (2007)
-
Miro-Roig, RM, “Cohomological characterisation of Steiner bundles”, Forum Mathematicum, 21:5 (2009), 871
-
Lutz Hille, Markus Perling, “Exceptional sequences of invertible sheaves on rational surfaces”, Compositio Math, 2011, 1
-
Okawa Sh. Uehara H., “Exceptional Sheaves on the Hirzebruch Surface _{2}”, Int. Math. Res. Notices, 2015, no. 23, 12781–12803
-
Chunyi Li, “Deformations of the Hilbert scheme of points on a del Pezzo surface”, Mosc. Math. J., 17:2 (2017), 291–321
-
Auel A. Bernardara M., “Cycles, Derived Categories, and Rationality”, Surveys on Recent Developments in Algebraic Geometry, Proceedings of Symposia in Pure Mathematics, 95, ed. Coskun I. DeFernex T. Gibney A., Amer Mathematical Soc, 2017, 199–266
-
Auel A., Bernardara M., “Semiorthogonal Decompositions and Birational Geometry of Del Pezzo Surfaces Over Arbitrary Fields”, Proc. London Math. Soc., 117:1 (2018), 1–64
|
Number of views: |
This page: | 341 | Full text: | 143 | References: | 20 | First page: | 1 |
|