|
This article is cited in 22 scientific papers (total in 23 papers)
Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with $p_g>0$
A. N. Tyurin
Abstract:
The author studies the geometry and the periods of components of moduli of sheaves on a regular algebraic surface.
Bibliography: 14 titles.
Full text:
PDF file (4582 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1989, 33:1, 139–177
Bibliographic databases:
UDC:
516.5
MSC: 14J10, 14F05 Received: 17.11.1986
Citation:
A. N. Tyurin, “Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with $p_g>0$”, Izv. Akad. Nauk SSSR Ser. Mat., 52:4 (1988), 813–852; Math. USSR-Izv., 33:1 (1989), 139–177
Citation in format AMSBIB
\Bibitem{Tyu88}
\by A.~N.~Tyurin
\paper Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with~$p_g>0$
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1988
\vol 52
\issue 4
\pages 813--852
\mathnet{http://mi.mathnet.ru/izv1206}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=966986}
\zmath{https://zbmath.org/?q=an:0673.14021}
\transl
\jour Math. USSR-Izv.
\yr 1989
\vol 33
\issue 1
\pages 139--177
\crossref{https://doi.org/10.1070/IM1989v033n01ABEH000818}
Linking options:
http://mi.mathnet.ru/eng/izv1206 http://mi.mathnet.ru/eng/izv/v52/i4/p813
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. N. Tyurin, “Algebraic geometric aspects of smooth structure. I. The Donaldson polynomials”, Russian Math. Surveys, 44:3 (1989), 113–178
-
A. N. Tyurin, “The Weil–Petersson metric on the moduli space of stable vector bundles and sheaves on an algebraic surface”, Math. USSR-Izv., 38:3 (1992), 599–620
-
Zhenbo Qin, “Simple sheaves versus stable sheaves on algebraic surfaces”, Math Z, 209:1 (1992), 559
-
V. Ya. Pidstrigach, A. N. Tyurin, “Invariants of the smooth structure of an algebraic surface arising from the Dirac operator”, Russian Acad. Sci. Izv. Math., 40:2 (1993), 267–351
-
Zhenbo Qin, “Moduli of simple rank-2 sheaves onK3-surfaces”, manuscripta math, 79:1 (1993), 253
-
Hoil Kim, “Exceptional bundles on nodal Enriques surfaces”, manuscripta math, 82:1 (1994), 1
-
A. N. Tyurin, “Canonical spin polynomials of an algebraic surface. I”, Russian Acad. Sci. Izv. Math., 45:3 (1995), 577–621
-
Angelo Felice Lopez, Gian Pietro Pirola, “On the curves through a general point of a smooth surface in ℙ3
”, Math Z, 219:1 (1995), 93
-
Francesco Bottacin, “Poisson structures on moduli spaces of sheaves over Poisson surfaces”, Invent math, 121:1 (1995), 421
-
A. N. Tyurin, “Special Lagrangian geometry as slightly deformed algebraic geometry (geometric quantization and mirror symmetry)”, Izv. Math., 64:2 (2000), 363–437
-
A. N. Tyurin, “Non-abelian analogues of Abel's theorem”, Izv. Math., 65:1 (2001), 123–180
-
F. A. Bogomolov, A. L. Gorodentsev, V. A. Iskovskikh, Yu. I. Manin, V. V. Nikulin, D. O. Orlov, A. N. Parshin, V. Ya. Pidstrigach, A. S. Tikhomirov, N. A. Tyurin, I. R. Shafarevich, “Andrei Nikolaevich Tyurin (obituary)”, Russian Math. Surveys, 58:3 (2003), 597–605
-
D. G. Markushevich, A. S. Tikhomirov, “Symplectic structure on a moduli space of sheaves on the cubic fourfold”, Izv. Math., 67:1 (2003), 121–144
-
V. V. Nikulin, “On Correspondences of a K3 Surface with Itself. I”, Proc. Steklov Inst. Math., 246 (2004), 204–226
-
CLAUDIO BARTOCCI, EMANUELE MACRÌ, “CLASSIFICATION OF Poisson SURFACES”, Commun. Contemp. Math, 07:01 (2005), 89
-
“STABLE VECTOR BUNDLES OF RANK TWO ON ENRIQUES SURFACES”, Journal of the Korean Mathematical Society, 43:4 (2006), 765
-
Jacques Hurtubise, “Separation of Variables and the Geometry of Jacobians”, SIGMA, 3 (2007), 017, 14 pp.
-
Eyal Markman, “Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces”, Advances in Mathematics, 208:2 (2007), 622
-
John Harnad, Jacques Hurtubise, “Multi-Hamiltonian structures for r-matrix systems”, J Math Phys (N Y ), 49:6 (2008), 062903
-
C. G. Madonna, V. V. Nikulin, “Explicit correspondences of a K3 surface with itself”, Izv. Math., 72:3 (2008), 497–508
-
Kuznetsov, A, “Symplectic structures on moduli spaces of sheaves via the Atiyah class”, Journal of Geometry and Physics, 59:7 (2009), 843
-
Viacheslav V. Nikulin, “Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups”, Proc. Steklov Inst. Math., 273 (2011), 229–237
-
Francesco Sala, “Symplectic structures on moduli spaces of framed sheaves on surfaces”, centr.eur.j.math, 2012
|
Number of views: |
This page: | 362 | Full text: | 146 | References: | 29 | First page: | 2 |
|