Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1989, Volume 53, Issue 2, Pages 398–410 (Mi izv1247)  

This article is cited in 3 scientific papers (total in 3 papers)

On projective simplicity of certain groups of rational points over algebraic number fields

V. I. Chernousov


Abstract: It is proved that, if $G$ is a simply connected anisotropic absolutely simple algebraic group with rank $n\geqslant2$ defined over an algebraic number field and decomposable over a quadratic extension, then the group $G(K)$ of rational points is projectively simple, i.e. the factor group modulo the center is simple. Projective simplicity of algebraic groups of type $B_n$, $C_n$, $G_2$, $F_4$, $F_7$ is obtained as a corollary, and also the same for groups of type $E_8$ whenever the Hasse principle holds. In addition the problem of projective simplicity for groups of type $^{(1)}D_n$, $^{(2)}D_n$ ($n\geqslant4$) is reduced to the case of groups of type $A_3$.
Bibliography: 18 titles.

Full text: PDF file (1407 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1990, 34:2, 409–423

Bibliographic databases:

UDC: 512.7
MSC: Primary 20G30; Secondary 15A66, 11E88, 11E57, 20G20
Received: 06.05.1987

Citation: V. I. Chernousov, “On projective simplicity of certain groups of rational points over algebraic number fields”, Izv. Akad. Nauk SSSR Ser. Mat., 53:2 (1989), 398–410; Math. USSR-Izv., 34:2 (1990), 409–423

Citation in format AMSBIB
\Bibitem{Che89}
\by V.~I.~Chernousov
\paper On projective simplicity of certain groups of rational points over algebraic number fields
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1989
\vol 53
\issue 2
\pages 398--410
\mathnet{http://mi.mathnet.ru/izv1247}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=998303}
\zmath{https://zbmath.org/?q=an:0703.14014}
\transl
\jour Math. USSR-Izv.
\yr 1990
\vol 34
\issue 2
\pages 409--423
\crossref{https://doi.org/10.1070/IM1990v034n02ABEH000657}


Linking options:
  • http://mi.mathnet.ru/eng/izv1247
  • http://mi.mathnet.ru/eng/izv/v53/i2/p398

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. M. Tomanov, “On the structure of division algebras of index $2^m$”, Russian Math. Surveys, 45:6 (1990), 170–172  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. G. M. Tomanov, “On the group of reduced norm 1 group of a division algebra over a global field”, Math. USSR-Izv., 39:1 (1992), 895–904  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. M. S. Raghunathan, “The congruence subgroup problem”, Proc Math Sci, 114:4 (2004), 299  crossref  mathscinet  zmath
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:201
    Full text:65
    References:48
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021