RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1989, Volume 53, Issue 4, Pages 675–707 (Mi izv1269)  

This article is cited in 8 scientific papers (total in 8 papers)

The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple Fourier series of functions in $L_1$ equal to zero on a given set

I. L. Bloshanskii


Abstract: The precise structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere (a.e.) of Fourier series of functions in the class $L_1(T^N)$, $N\geqslant1$, $T^N[0,2\pi]^N$, and vanishing on a given measurable set $E$ is found (in the case $N\geqslant2$ this is done for both rectangular and square summation).
Bibliography: 21 titles.

Full text: PDF file (3167 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1990, 35:1, 1–35

Bibliographic databases:

UDC: 517.5
MSC: Primary 42B05; Secondary 42A63
Received: 13.07.1987

Citation: I. L. Bloshanskii, “The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple Fourier series of functions in $L_1$ equal to zero on a given set”, Izv. Akad. Nauk SSSR Ser. Mat., 53:4 (1989), 675–707; Math. USSR-Izv., 35:1 (1990), 1–35

Citation in format AMSBIB
\Bibitem{Blo89}
\by I.~L.~Bloshanskii
\paper The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple Fourier series of functions in~$L_1$ equal to zero on a~given set
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1989
\vol 53
\issue 4
\pages 675--707
\mathnet{http://mi.mathnet.ru/izv1269}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1018743}
\zmath{https://zbmath.org/?q=an:0701.42008}
\transl
\jour Math. USSR-Izv.
\yr 1990
\vol 35
\issue 1
\pages 1--35
\crossref{https://doi.org/10.1070/IM1990v035n01ABEH000684}


Linking options:
  • http://mi.mathnet.ru/eng/izv1269
  • http://mi.mathnet.ru/eng/izv/v53/i4/p675

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. I. Dyachenko, “Some problems in the theory of multiple trigonometric series”, Russian Math. Surveys, 47:5 (1992), 103–171  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. S. K. Bloshanskaya, I. L. Bloshanskii, “Generalized localization for the multiple Walsh–Fourier series of functions in $L_p$, $p\geqslant 1$”, Sb. Math., 186:2 (1995), 181–196  mathnet  crossref  mathscinet  zmath  isi
    3. I. L. Bloshanskii, O. K. Ivanova, T. Yu. Roslova, “Generalized localization and equiconvergence of expansions in double trigonometric series and in the Fourier integral for functions from $L(\ln^+L)^2$”, Math. Notes, 60:3 (1996), 324–327  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. S. K. Bloshanskaya, I. L. Bloshanskii, T. Yu. Roslova, “Generalized localization for the double trigonometric Fourier series and the Walsh–Fourier series of functions in $L\log^+L\log^+\log^+L$”, Sb. Math., 189:5 (1998), 657–682  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. O. K. Ivanova, “Majorant estimates for partial sums of multiple Fourier series from Orlicz spaces that vanish on some set”, Math. Notes, 65:6 (1999), 694–700  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. I. L. Bloshanskii, “A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations”, Math. Notes, 71:4 (2002), 464–476  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. I. L. Bloshanskii, T. A. Matseevich, “A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a Certain Module of Continuity”, Journal of Mathematical Sciences, 155:1 (2008), 31–46  mathnet  crossref  mathscinet  zmath
    8. I. L. Bloshanskii, O. V. Lifantseva, “Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence”, Math. Notes, 84:3 (2008), 314–327  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:232
    Full text:68
    References:24
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019