RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1989, Volume 53, Issue 4, Pages 833–850 (Mi izv1276)  

This article is cited in 4 scientific papers (total in 4 papers)

On Wiman's theorem concerning the minimum modulus of a function analytic in the unit disk

O. B. Skaskiv


Abstract: This paper contains an investigation of conditions under which an analytic function $F(z)$ represented by a Dirichlet series
$$ F(z)=\sum_{n=0}^\infty a_ne^{z\lambda_n},\qquad 0=\lambda_0<\lambda_n\uparrow+\infty\quad(n\to+\infty), $$
absolutely convergent in $ż\colon\operatorname{Re}z<0\}$ satisfies the relation
$$ F(x+iy)=(1+o(1))a_{\nu(x)}e^{(x+iy)\lambda_{\nu(x)}} $$
uniformly with respect to $y\in\mathbf R$ as $x\to-0$ in the complement of some sufficiently small set. The results are used to derive as simple corollaries new assertions for functions analytic in the unit disk that are represented by lacunary power series. All the assertions proved in this article are best possible or close to best possible.
Bibliography: 12 titles.

Full text: PDF file (1537 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1990, 35:1, 165–182

Bibliographic databases:

UDC: 517.535
MSC: Primary 30B50; Secondary 30B10
Received: 05.01.1987

Citation: O. B. Skaskiv, “On Wiman's theorem concerning the minimum modulus of a function analytic in the unit disk”, Izv. Akad. Nauk SSSR Ser. Mat., 53:4 (1989), 833–850; Math. USSR-Izv., 35:1 (1990), 165–182

Citation in format AMSBIB
\Bibitem{Ska89}
\by O.~B.~Skaskiv
\paper On Wiman's theorem concerning the minimum modulus of a~function analytic in the unit disk
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1989
\vol 53
\issue 4
\pages 833--850
\mathnet{http://mi.mathnet.ru/izv1276}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1018750}
\zmath{https://zbmath.org/?q=an:0698.30025}
\transl
\jour Math. USSR-Izv.
\yr 1990
\vol 35
\issue 1
\pages 165--182
\crossref{https://doi.org/10.1070/IM1990v035n01ABEH000694}


Linking options:
  • http://mi.mathnet.ru/eng/izv1276
  • http://mi.mathnet.ru/eng/izv/v53/i4/p833

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. B. Skaskiv, “On the minimum of the absolute value of the sum for a Dirichlet series with bounded sequence of exponents”, Math. Notes, 56:5 (1994), 1177–1184  mathnet  crossref  mathscinet  zmath  isi
    2. A. M. Gaisin, “Behavior of the logarithm of the modulus value of the sum of a Dirichlet series converging in a half-plane”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 175–186  mathnet  crossref  mathscinet  zmath  isi
    3. A. M. Gaisin, “Maximal Term of the Modified Dirichlet Series”, Math. Notes, 69:6 (2001), 756–769  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. A. M. Gaisin, T. I. Belous, “Estimation over curves of the functions given by Dirichlet series on a half-plane”, Siberian Math. J., 44:1 (2003), 22–36  mathnet  crossref  mathscinet  zmath  isi
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:216
    Full text:73
    References:21
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019