|
This article is cited in 23 scientific papers (total in 23 papers)
Problems of Burnside type and the finite basis property in varieties of semigroups
M. V. Sapir
Abstract:
Algorithms are found that determine, for a finite set of identities (balanced identities), whether every nil-semigroup (periodic semigorup) satisfying them is locally finite. A number of results on finitely based semigroup varieties are obtained as corollaries.
Bibliography: 34 titles.
Full text:
PDF file (3261 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1988, 30:2, 295–314
Bibliographic databases:
UDC:
512.513
MSC: Primary 20M07; Secondary 20M99 Received: 29.11.1984
Citation:
M. V. Sapir, “Problems of Burnside type and the finite basis property in varieties of semigroups”, Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987), 319–340; Math. USSR-Izv., 30:2 (1988), 295–314
Citation in format AMSBIB
\Bibitem{Sap87}
\by M.~V.~Sapir
\paper Problems of Burnside type and the finite basis property in varieties of semigroups
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1987
\vol 51
\issue 2
\pages 319--340
\mathnet{http://mi.mathnet.ru/izv1296}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=897000}
\zmath{https://zbmath.org/?q=an:0646.20047}
\transl
\jour Math. USSR-Izv.
\yr 1988
\vol 30
\issue 2
\pages 295--314
\crossref{https://doi.org/10.1070/IM1988v030n02ABEH001012}
Linking options:
http://mi.mathnet.ru/eng/izv1296 http://mi.mathnet.ru/eng/izv/v51/i2/p319
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
M. V. Sapir, “Inherently nonfinitely based finite semigroups”, Math. USSR-Sb., 61:1 (1988), 155–166
-
M. V. Sapir, “The restricted Burnside problem for varieties of semigroups”, Math. USSR-Izv., 38:3 (1992), 659–667
-
Jennifer Hyndman, Ralph McKenzie, Walter Taylor, “
k-ary monoids of term operations”, Semigroup Forum, 44:1 (1992), 21
-
George F. McNulty, “A field guide to equational logic”, Journal of Symbolic Computation, 14:4 (1992), 371
-
Robert Cacioppo, “Nonfinitely based pseudovarieties and inherently nonfinitely based varieties”, Semigroup Forum, 47:1 (1993), 223
-
L. N. Shevrin, “On the theory of epigroups. I”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 485–512
-
Marcel Jackson, “Small semigroup related structures with infinite properties”, BAZ, 61:3 (2000), 525
-
Marcel Jackson, “Finite Semigroups Whose Varieties Have Uncountably Many Subvarieties”, Journal of Algebra, 228:2 (2000), 512
-
MARCEL JACKSON, OLGA SAPIR, “FINITELY BASED, FINITE SETS OF WORDS”, Int. J. Algebra Comput, 10:06 (2000), 683
-
OLGA SAPIR, “FINITELY BASED WORDS”, Int. J. Algebra Comput, 10:04 (2000), 457
-
V. Yu. Popov, “Markov Properties of Burnside Varieties of Semigroups”, Algebra and Logic, 42:1 (2003), 54–60
-
M. V. Volkov, I. A. Gol'dberg, “Identities of Semigroups of Triangular Matrices over Finite Fields”, Math. Notes, 73:4 (2003), 474–481
-
Charles C. Edmunds, Edmond W. H. Lee, Ken W. K. Lee, “Small Semigroups Generating Varieties with Continuum Many Subvarieties”, Order, 2010
-
Edmond W. H. Lee, “Finite basis problem for 2-testable monoids”, centr eur j math, 2010
-
Yanfeng Luo, Wenting Zhang, “On the variety generated by all semigroups of order three”, Journal of Algebra, 334:1 (2011), 1
-
Edmond W. H. Lee, Jian Rong Li, Wen Ting Zhang, “Minimal non-finitely based semigroups”, Semigroup Forum, 2012
-
Edmond W. H. Lee, “Varieties generated by 2-testable monoids”, Studia Scientiarum Mathematicarum Hungarica, 49:3 (2012), 366
-
E.W.. H. Lee, W.T.ing Zhang, “Finite basis problem for semigroups of order six”, LMS J. Comput. Math, 18:01 (2015), 1
-
Olga Sapir, “Non-finitely based monoids”, Semigroup Forum, 2015
-
D. V. Solomatin, “Planarnye mnogoobraziya polugrupp”, Sib. elektron. matem. izv., 12 (2015), 232–247
-
I. M. Isaev, A. V. Kislitsin, “Tozhdestva vektornykh prostranstv, vlozhennykh v lineinye algebry”, Sib. elektron. matem. izv., 12 (2015), 328–343
-
Jackson M., Lee E.W.H., “Monoid Varieties With Extreme Properties”, Trans. Am. Math. Soc., 370:7 (2018), 4785–4812
-
Volkov M.V. Silva P.V. Soares F., “Local Finiteness For Green'S Relations in Semigroup Varieties”, Commun. Algebr., 46:11 (2018), 4625–4653
|
Number of views: |
This page: | 764 | Full text: | 112 | References: | 33 | First page: | 1 |
|