RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1987, Volume 51, Issue 2, Pages 379–401 (Mi izv1299)  

This article is cited in 9 scientific papers (total in 9 papers)

The generalized Browder–Livesay invariant

A. F. Kharshiladze


Abstract: An algebraic construction is given for computing the generalized Browder–Livesay invariant for homotopy smoothings or triangulations having trivial normal invariant.
Bibliography: 10 titles.

Full text: PDF file (3080 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1988, 30:2, 353–374

Bibliographic databases:

UDC: 513.8
MSC: Primary 57R10, 57R65, 57R67, 18F25; Secondary 13D15, 55N15, 55P10, 57Q15
Received: 22.08.1985

Citation: A. F. Kharshiladze, “The generalized Browder–Livesay invariant”, Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987), 379–401; Math. USSR-Izv., 30:2 (1988), 353–374

Citation in format AMSBIB
\Bibitem{Kha87}
\by A.~F.~Kharshiladze
\paper The generalized Browder--Livesay invariant
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1987
\vol 51
\issue 2
\pages 379--401
\mathnet{http://mi.mathnet.ru/izv1299}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=897003}
\zmath{https://zbmath.org/?q=an:0643.57017}
\transl
\jour Math. USSR-Izv.
\yr 1988
\vol 30
\issue 2
\pages 353--374
\crossref{https://doi.org/10.1070/IM1988v030n02ABEH001017}


Linking options:
  • http://mi.mathnet.ru/eng/izv1299
  • http://mi.mathnet.ru/eng/izv/v51/i2/p379

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. F. Kharshiladze, “Surgery on manifolds with finite fundamental groups”, Russian Math. Surveys, 42:4 (1987), 65–103  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. Yu. V. Muranov, “Obstruction groups to splitting along one-sided submanifolds”, Russian Math. Surveys, 50:1 (1995), 205–207  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. Yu. V. Muranov, “Splitting obstruction groups and quadratic extensions of anti-structures”, Izv. Math., 59:6 (1995), 1207–1232  mathnet  crossref  mathscinet  zmath  isi
    4. P. M. Akhmet'ev, Yu. V. Muranov, “Obstructions to splitting manifolds with infinite fundamental group”, Math. Notes, 60:2 (1996), 121–129  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. Yu. V. Muranov, D. Repovš, “Groups of obstructions to surgery and splitting for a manifold pair”, Sb. Math., 188:3 (1997), 449–463  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. Yu. V. Muranov, I. Hambleton, “Projective splitting obstruction groups for one-sided submanifolds”, Sb. Math., 190:10 (1999), 1465–1485  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. Yu. V. Muranov, D. Repovš, “The Groups $LS$ and Morphisms of Quadratic Extensions”, Math. Notes, 70:3 (2001), 378–383  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. Cavicchioli A. Muranov Y. Repovs D., “Algebraic Properties of Decorated Splitting Obstruction Groups”, Boll. Unione Mat. Italiana, 4B:3 (2001), 647–675  mathscinet  zmath  isi
    9. Cavicchioli A. Muranov Y. Spaggiari F., “Relative Groups in Surgery Theory”, Bull. Belg. Math. Soc.-Simon Steven, 12:1 (2005), 109–135  mathscinet  zmath  isi
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:130
    Full text:50
    References:30
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019