|
This article is cited in 18 scientific papers (total in 18 papers)
Involutions of integral quadratic forms and their applications to real algebraic geometry
V. V. Nikulin
Full text:
PDF file (6873 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1984, 22:1, 99–172
Bibliographic databases:
UDC:
513.6+511
MSC: 10C05, 14J99 Received: 01.06.1982
Citation:
V. V. Nikulin, “Involutions of integral quadratic forms and their applications to real algebraic geometry”, Izv. Akad. Nauk SSSR Ser. Mat., 47:1 (1983), 109–188; Math. USSR-Izv., 22:1 (1984), 99–172
Citation in format AMSBIB
\Bibitem{Nik83}
\by V.~V.~Nikulin
\paper Involutions of integral quadratic forms and their applications to real algebraic geometry
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1983
\vol 47
\issue 1
\pages 109--188
\mathnet{http://mi.mathnet.ru/izv1383}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=688920}
\zmath{https://zbmath.org/?q=an:0547.10021}
\transl
\jour Math. USSR-Izv.
\yr 1984
\vol 22
\issue 1
\pages 99--172
\crossref{https://doi.org/10.1070/IM1984v022n01ABEH001435}
Linking options:
http://mi.mathnet.ru/eng/izv1383 http://mi.mathnet.ru/eng/izv/v47/i1/p109
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Nikulin, “Filtrations of 2-elementary forms and involutions of integral symmetric and skew-symmetric bilinear forms”, Math. USSR-Izv., 27:1 (1986), 159–182
-
T. Fidler, “Additional inequalities in the topology of real plane algebraic curves”, Math. USSR-Izv., 27:1 (1986), 183–191
-
O. Ya. Viro, “Progress in the topology of real algebraic varieties over the last six years”, Russian Math. Surveys, 41:3 (1986), 55–82
-
V. A. Krasnov, “On cohomology classes defined by the real points of a real algebraic $\operatorname{GM}$-surface”, Russian Acad. Sci. Izv. Math., 43:2 (1994), 385–395
-
V. A. Gritsenko, V. V. Nikulin, “Igusa modular forms and 'the simplest' Lorentzian Kac–Moody algebras”, Sb. Math., 187:11 (1996), 1601–1641
-
V. A. Krasnov, “On orientable real algebraic $M$-surfaces”, Math. Notes, 62:4 (1997), 434–438
-
Alexander Degtyarev, Viatcheslav Kharlamov, “On the moduli space of real Enriques surfaces”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 324:3 (1997), 317
-
V. A. Krasnov, “Real algebraic GM$\mathbb Z$-surfaces”, Izv. Math., 62:4 (1998), 695–721
-
A. I. Degtyarev, V. M. Kharlamov, “Topological properties of real algebraic varieties: du coté de chez Rokhlin”, Russian Math. Surveys, 55:4 (2000), 735–814
-
Degtyarev A., Itenberg I., Kharlamov V., “Real Enriques surfaces”, Real Enriques Surfaces, Lecture Notes in Mathematics, 1746, 2000, VII–+
-
Gritsenko V.A., Nikulin V.V., “The arithmetic mirror symmetry and Calabi-Yau manifolds”, Communications in Mathematical Physics, 210:1 (2000), 1–11
-
V. A. Krasnov, “The Nikulin Congruence for Four-Dimensional $M$-Varieties”, Math. Notes, 76:2 (2004), 191–199
-
Ken-Ichi Yoshikawa, “Real K3 surfaces without real points, equivariant determinant of the Laplacian, and the Borcherds Φ-function”, Math Z, 258:1 (2007), 213
-
V. V. Nikulin, “On the connected components of moduli of real polarized K3-surfaces”, Izv. Math., 72:1 (2008), 91–111
-
Atsuhira Nagano, Hironori Shiga, “Modular map for the family of abelian surfaces via ellipticK3 surfaces”, Math. Nachr, 2014, n/a
-
Finashin S. Kharlamov V., “Apparent Contours of Nonsingular Real Cubic Surfaces”, Trans. Am. Math. Soc., 367:10 (2015), PII S0002-9947(2015)06286-2, 7221–7289
-
V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. II”, Izv. Math., 80:2 (2016), 359–402
-
V. A. Krasnov, “Real Kummer surfaces”, Izv. Math., 83:1 (2019), 65–103
|
Number of views: |
This page: | 424 | Full text: | 159 | References: | 38 | First page: | 2 |
|