RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1984, Volume 48, Issue 1, Pages 127–154 (Mi izv1421)  

This article is cited in 3 scientific papers (total in 3 papers)

A suspension sequence in the theory of links

V. M. Nezhinskii


Abstract: In this paper the author defines and studies asuspension sequence in the theory of links that generalizes the classical suspension sequence of knot theory (i.e. one-component links).
Bibliography: 9 titles.

Full text: PDF file (2681 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1985, 24:1, 121–150

Bibliographic databases:

UDC: 513.832/835
MSC: Primary 57Q45; Secondary 57M25, 55P40
Received: 20.05.1982

Citation: V. M. Nezhinskii, “A suspension sequence in the theory of links”, Izv. Akad. Nauk SSSR Ser. Mat., 48:1 (1984), 127–154; Math. USSR-Izv., 24:1 (1985), 121–150

Citation in format AMSBIB
\Bibitem{Nez84}
\by V.~M.~Nezhinskii
\paper A~suspension sequence in the theory of links
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1984
\vol 48
\issue 1
\pages 127--154
\mathnet{http://mi.mathnet.ru/izv1421}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=733361}
\zmath{https://zbmath.org/?q=an:0561.57013|0549.57009}
\transl
\jour Math. USSR-Izv.
\yr 1985
\vol 24
\issue 1
\pages 121--150
\crossref{https://doi.org/10.1070/IM1985v024n01ABEH001218}


Linking options:
  • http://mi.mathnet.ru/eng/izv1421
  • http://mi.mathnet.ru/eng/izv/v48/i1/p127

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ulrich Koschorke, “A generalization of Milnor's μ-invariants to higher-dimensional link maps”, Topology, 36:2 (1997), 301  crossref
    2. V. M. Nezhinskii, “Multidimensional analogue of Gusarov's theory of one-dimensional knots”, Russian Math. Surveys, 63:1 (2008), 166–167  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. D. Repovš, M. B. Skopenkov, M. Cencelj, “Classification of knotted tori in 2-metastable dimension”, Sb. Math., 203:11 (2012), 1654–1681  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:133
    Full text:50
    References:19
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019