RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1983, Volume 47, Issue 5, Pages 999–1029 (Mi izv1434)  

This article is cited in 10 scientific papers (total in 10 papers)

Pseudodifferential operators and a canonical operator in general symplectic manifolds

M. V. Karasev, V. P. Maslov


Abstract: A calculus of $h$-pseudodifferential operators with symbols on $\mathfrak X$ is defined modulo $O(h^2)$ on a closed symplectic manifold $(\mathfrak X,\omega)$ under the condition that $[\omega]/(2\pi h)-\varkappa/4 \in H^2(\mathfrak X,\mathbf Z)$. The class $\varkappa\in H^2(\mathfrak X,\mathbf Z)$ is described. On Lagrangian submanifolds $\Lambda\subset\mathfrak X$ a class in $H^1(\Lambda,\mathbf U(1))$ obstructing the definition of a canonical operator on $\Lambda$ is found. It is shown that an analogus calculus of pseudodifferential operators can be constructed with respect to homogeneity from an action of the group $\mathbf R_+$ on $\mathfrak X$.
Bibliography: 22 titles.

Full text: PDF file (3063 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1984, 23:2, 277–305

Bibliographic databases:

UDC: 517.9
MSC: Primary 35S05, 58F05, 58G15; Secondary 47G05, 53C15, 55N30, 55S35, 58F06, 70D10, 70G35
Received: 14.06.1982

Citation: M. V. Karasev, V. P. Maslov, “Pseudodifferential operators and a canonical operator in general symplectic manifolds”, Izv. Akad. Nauk SSSR Ser. Mat., 47:5 (1983), 999–1029; Math. USSR-Izv., 23:2 (1984), 277–305

Citation in format AMSBIB
\Bibitem{KarMas83}
\by M.~V.~Karasev, V.~P.~Maslov
\paper Pseudodifferential operators and a~canonical operator in general symplectic manifolds
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1983
\vol 47
\issue 5
\pages 999--1029
\mathnet{http://mi.mathnet.ru/izv1434}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=718414}
\zmath{https://zbmath.org/?q=an:0554.58048|0538.58035}
\transl
\jour Math. USSR-Izv.
\yr 1984
\vol 23
\issue 2
\pages 277--305
\crossref{https://doi.org/10.1070/IM1984v023n02ABEH001772}


Linking options:
  • http://mi.mathnet.ru/eng/izv1434
  • http://mi.mathnet.ru/eng/izv/v47/i5/p999

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. P. Maslov, “Non-standard characteristics in asymptotic problems”, Russian Math. Surveys, 38:6 (1983), 1–42  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. M. V. Karasev, “Asymptotic behavior of the spectrum of mixed states for self-consistent field equations”, Theoret. and Math. Phys., 61:1 (1984), 1034–1040  mathnet  crossref  mathscinet  zmath  isi
    3. M. V. Karasev, V. P. Maslov, “Asymptotic and geometric quantization”, Russian Math. Surveys, 39:6 (1984), 133–205  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. M. V. Karasev, “Asymptotics of the eigenvalues of operators with a poisson algebra of symmetries in the highest symbol”, Funct. Anal. Appl., 18:2 (1984), 140–142  mathnet  crossref  mathscinet  zmath  isi
    5. M. V. Karasev, “Poisson symmetry algebras and the asymptotics of spectral series”, Funct. Anal. Appl., 20:1 (1986), 17–26  mathnet  crossref  mathscinet  zmath  isi
    6. Hideki Omori, Yoshiaki Maeda, Akira Yoshioka, “Weyl manifolds and deformation quantization”, Advances in Mathematics, 85:2 (1991), 224  crossref
    7. M. V. Karasev, M. B. Kozlov, “Representations of Compact Semisimple Lie Algebras over Lagrangian Submanifolds”, Funct. Anal. Appl., 28:4 (1994), 238–246  mathnet  crossref  mathscinet  zmath  isi
    8. V. G. Bagrov, V. V. Belov, M. F. Kondrat'eva, “The semiclassical approximation in quantum mechanics. A new approach”, Theoret. and Math. Phys., 98:1 (1994), 34–38  mathnet  crossref  mathscinet  zmath  isi
    9. Frank Geshwind, Nets Hawk Katz, “Pseudodifferential operators onSU(2)”, The Journal of Fourier Analysis and Applications, 3:2 (1997), 193  crossref  mathscinet
    10. J. Tosiek, P. Brzykcy, “States in the Hilbert space formulation and in the phase space formulation of quantum mechanics”, Annals of Physics, 2013  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:440
    Full text:145
    References:75
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019