RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1983, Volume 47, Issue 6, Pages 1208–1223 (Mi izv1443)  

This article is cited in 11 scientific papers (total in 11 papers)

Quasihomogeneous manifolds and generalized almost-Hermitian structures

V. F. Kirichenko


Abstract: The author considers new classes of differential-geometric structures on smooth manifolds that generalize almost-Hermitian and almost-contact $f$-structures and others, and establishes the local structure of generalized homogeneous manifolds that carry such a structure.
Bibliography: 24 titles.

Full text: PDF file (1977 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1984, 23:3, 473–486

Bibliographic databases:

UDC: 513.7
MSC: Primary 53B35; Secondary 53C55
Received: 09.03.1981

Citation: V. F. Kirichenko, “Quasihomogeneous manifolds and generalized almost-Hermitian structures”, Izv. Akad. Nauk SSSR Ser. Mat., 47:6 (1983), 1208–1223; Math. USSR-Izv., 23:3 (1984), 473–486

Citation in format AMSBIB
\Bibitem{Kir83}
\by V.~F.~Kirichenko
\paper Quasihomogeneous manifolds and generalized almost-Hermitian structures
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1983
\vol 47
\issue 6
\pages 1208--1223
\mathnet{http://mi.mathnet.ru/izv1443}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=727752}
\zmath{https://zbmath.org/?q=an:0556.53023|0536.53042}
\transl
\jour Math. USSR-Izv.
\yr 1984
\vol 23
\issue 3
\pages 473--486
\crossref{https://doi.org/10.1070/IM1984v023n03ABEH001781}


Linking options:
  • http://mi.mathnet.ru/eng/izv1443
  • http://mi.mathnet.ru/eng/izv/v47/i6/p1208

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. F. Kirichenko, “Locally conformallity Kählerian manifolds of constant holomorphic sectional curvature”, Math. USSR-Sb., 72:2 (1992), 333–342  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. V. F. Kirichenko, N. N. Shchipkova, “On the geometry of Gray–Vaisman manifolds”, Russian Math. Surveys, 49:2 (1994), 161–162  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. E. S. Volkova, “Curvature identities for normal manifolds of killing type”, Math. Notes, 62:3 (1997), 296–305  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. V. F. Kirichenko, L. V. Lipagina, “Killing $f$-manifolds of constant type”, Izv. Math., 63:5 (1999), 963–981  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. A. A. Ermolitskii, “The hat theorem and problems of the classification of structures on Riemannian manifolds”, Russian Math. (Iz. VUZ), 46:11 (2002), 24–28  mathnet  mathscinet  zmath  elib
    6. Russian Math. (Iz. VUZ), 48:10 (2004), 30–40  mathnet  mathscinet  zmath  elib
    7. V. V. Balashchenko, “Generalized symmetric spaces, Yu. P. Solovyov's formula, and the generalized Hermitian geometry”, J. Math. Sci., 159:6 (2009), 777–789  mathnet  crossref  mathscinet  zmath  elib
    8. V. V. Balashchenko, “Invariant $f$-structures on naturally reductive homogeneous spaces”, Russian Math. (Iz. VUZ), 52:4 (2008), 1–12  mathnet  crossref  mathscinet  zmath  elib
    9. A. S. Samsonov, “Nearly Kähler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order 6”, Russian Math. (Iz. VUZ), 55:4 (2011), 74–82  mathnet  crossref  mathscinet  elib
    10. A. S. Samsonov, “Nearly Kähler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order $k$ with special metrics”, Siberian Math. J., 52:6 (2011), 1092–1103  mathnet  crossref  mathscinet  isi
    11. P. A. Dubovik, “Hermitian $f$-structures on $6$-dimensional filiform Lie groups”, Russian Math. (Iz. VUZ), 60:7 (2016), 29–36  mathnet  crossref  isi
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:199
    Full text:86
    References:21
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019