RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1984, Volume 48, Issue 2, Pages 331–346 (Mi izv1448)  

This article is cited in 5 scientific papers (total in 5 papers)

A three-instanton solution

V. E. Korepin, S. L. Shatashvili


Abstract: The Yang–Mills field is studied in the case of the $\operatorname{SU}(2)$ algebra. An explicit three-instanton solution is constructed. This solution is a rational function of free real parameters which vary in $R^{18}+R_+^3$.
Bibliography: 13 titles.

Full text: PDF file (1235 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1985, 24:2, 307–320

Bibliographic databases:

UDC: 512
MSC: 81E10
Received: 24.05.1983

Citation: V. E. Korepin, S. L. Shatashvili, “A three-instanton solution”, Izv. Akad. Nauk SSSR Ser. Mat., 48:2 (1984), 331–346; Math. USSR-Izv., 24:2 (1985), 307–320

Citation in format AMSBIB
\Bibitem{KorSha84}
\by V.~E.~Korepin, S.~L.~Shatashvili
\paper A~three-instanton solution
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1984
\vol 48
\issue 2
\pages 331--346
\mathnet{http://mi.mathnet.ru/izv1448}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=740794}
\zmath{https://zbmath.org/?q=an:0574.14015}
\transl
\jour Math. USSR-Izv.
\yr 1985
\vol 24
\issue 2
\pages 307--320
\crossref{https://doi.org/10.1070/IM1985v024n02ABEH001233}


Linking options:
  • http://mi.mathnet.ru/eng/izv1448
  • http://mi.mathnet.ru/eng/izv/v48/i2/p331

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. A. Korotkin, “Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions”, Math. USSR-Sb., 70:2 (1991), 355–366  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. W. Siegel, “Super multi-instantons in conformal chiral superspace”, Phys Rev D, 52:2 (1995), 1042  crossref  mathscinet  adsnasa  isi
    3. Machiko Hatsuda, “New holographic limit of AdS_{5}⊗S^{5}”, Phys Rev D, 67:6 (2003), 066005  crossref  mathscinet  isi
    4. Min-Young Choi, Kyung Kiu Kim, Choonkyu Lee, Ki-Myeong Lee, “Higgs structures of dyonic instantons”, J High Energy Phys, 2008:4 (2008), 097  crossref  mathscinet
    5. Sheng-Hong Lai, Jen-Chi Lee, I-Hsun Tsai, “Biquaternions and ADHM construction of non-compact <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>S</mml:mi><mml:mi>L</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mi>C</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> Yang–Mills insta”, Annals of Physics, 2015  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:217
    Full text:69
    References:33
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019