RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1984, Volume 48, Issue 3, Pages 451–475 (Mi izv1453)  

This article is cited in 7 scientific papers (total in 7 papers)

A type of lower estimate for entire functions of finite order, and some applications

A. V. Bratishchev


Abstract: This paper describes some classes of entire functions of finite order that admit natural estimates outside a system of pairwise disjoint disks with centers at the zeros. The Hermite interpolation problem is solved under weaker conditions than were previously used, for the class of functions of finite type and for classes of functions with indicator not exceeding a given one. In a number of spaces of holomorphic functions we describe, completely or partially, the invariant subspaces in which the root vectors of the differentiation operator form a basis.
Bibliography: 41 titles.

Full text: PDF file (2285 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1985, 24:3, 415–438

Bibliographic databases:

UDC: 517.547.22+517.984.52
MSC: 30D15, 30E10, 30H05
Received: 08.10.1981
Revised: 16.02.1983

Citation: A. V. Bratishchev, “A type of lower estimate for entire functions of finite order, and some applications”, Izv. Akad. Nauk SSSR Ser. Mat., 48:3 (1984), 451–475; Math. USSR-Izv., 24:3 (1985), 415–438

Citation in format AMSBIB
\Bibitem{Bra84}
\by A.~V.~Bratishchev
\paper A~type of lower estimate for entire functions of finite order, and some applications
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1984
\vol 48
\issue 3
\pages 451--475
\mathnet{http://mi.mathnet.ru/izv1453}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=747248}
\zmath{https://zbmath.org/?q=an:0565.30021|0551.30026}
\transl
\jour Math. USSR-Izv.
\yr 1985
\vol 24
\issue 3
\pages 415--438
\crossref{https://doi.org/10.1070/IM1985v024n03ABEH001243}


Linking options:
  • http://mi.mathnet.ru/eng/izv1453
  • http://mi.mathnet.ru/eng/izv/v48/i3/p451

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. S. Krivosheev, “Interpolation with estimates in $\mathbb C^n$ and its applications”, Sb. Math., 192:9 (2001), 1297–1340  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. S. Krivosheev, “A fundamental principle for invariant subspaces in convex domains”, Izv. Math., 68:2 (2004), 291–353  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. B. Sherstyukov, “On Some Criteria for Completely Regular Growth of Entire Functions of Exponential Type”, Math. Notes, 80:1 (2006), 114–126  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. V. V. Napalkov, V. E. Kim, “Isomorphism between the solution spaces of a discrete convolution equation and a convolution equation on the space of entire functions”, Math. Notes, 80:5 (2006), 692–709  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. V. B. Sherstyukov, “K probleme Leonteva o tselykh funktsiyakh vpolne regulyarnogo rosta”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:2(1) (2013), 30–35  mathnet
    6. G. G. Braichev, V. B. Sherstyukov, “Tochnye otsenki asimptoticheskikh kharakteristik rosta tselykh funktsii s nulyami na zadannykh mnozhestvakh”, Fundament. i prikl. matem., 22:1 (2018), 51–97  mathnet
    7. V. B. Sherstyukov, “Asimptoticheskie svoistva tselykh funktsii s zadannym zakonom raspredeleniya kornei”, Kompleksnyi analiz. Tselye funktsii i ikh primeneniya, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 161, VINITI RAN, M., 2019, 104–129  mathnet
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:267
    Full text:100
    References:39
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019