RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1986, Volume 50, Issue 1, Pages 101–136 (Mi izv1473)  

This article is cited in 5 scientific papers (total in 5 papers)

Classification of periodic functions and the rate of convergence of their Fourier series

A. I. Stepanets


Abstract: The author proposes a classification for periodic functions that is based on grouping them according to the rate at which their Fourier coefficients tend to zero. The classes $L_\beta^\psi\mathfrak N$ thereby introduced coincide, for fixed values of the defining parameters, with the known classes $W^r$, $W^rH_\omega$, $W_\beta^r$, $W_\beta^rH_\omega$, and the like. Such an approach permits the classification of a wide spectrum of periodic functions, including infinitely differentiable, analytic, and entire functions. The asymptotic behavior of the deviations of the Fourier sums in these classes is studied. The assertions obtained in this direction contain results known earlier on approximation by Fourier sums of classes of differentiable functions.
Bibliography: 18 titles.

Full text: PDF file (3571 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1987, 28:1, 99–132

Bibliographic databases:

UDC: 517.5
MSC: 42A16, 42A10
Received: 02.12.1983
Revised: 04.06.1985

Citation: A. I. Stepanets, “Classification of periodic functions and the rate of convergence of their Fourier series”, Izv. Akad. Nauk SSSR Ser. Mat., 50:1 (1986), 101–136; Math. USSR-Izv., 28:1 (1987), 99–132

Citation in format AMSBIB
\Bibitem{Ste86}
\by A.~I.~Stepanets
\paper Classification of periodic functions and the rate of convergence of their Fourier series
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1986
\vol 50
\issue 1
\pages 101--136
\mathnet{http://mi.mathnet.ru/izv1473}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=835568}
\zmath{https://zbmath.org/?q=an:0615.42005}
\transl
\jour Math. USSR-Izv.
\yr 1987
\vol 28
\issue 1
\pages 99--132
\crossref{https://doi.org/10.1070/IM1987v028n01ABEH000869}


Linking options:
  • http://mi.mathnet.ru/eng/izv1473
  • http://mi.mathnet.ru/eng/izv/v50/i1/p101

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. K. Kushpel', “Sharp estimates of the widths of convolution classes”, Math. USSR-Izv., 33:3 (1989), 631–649  mathnet  crossref  mathscinet  zmath
    2. A. I. Stepanets, “Solution of the Kolmogorov–Nikol'skii problem for the Poisson integrals of continuous functions”, Sb. Math., 192:1 (2001), 113–139  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Feng Dai, Kunyang Wang, “Convergence rate of spherical harmonic expansions of smooth functions”, Journal of Mathematical Analysis and Applications, 348:1 (2008), 28  crossref
    4. A. S. Serdyuk, Ie. Yu. Ovsii, “Uniform Approximation of Periodical Functions by Trigonometric Sums of Special Type”, ISRN Mathematical Analysis, 2014 (2014), 1  crossref
    5. S. B. Vakarchuk, “Best Polynomial Approximations and Widths of Classes of Functions in the Space $L_2$”, Math. Notes, 103:2 (2018), 308–312  mathnet  crossref  crossref  isi  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:366
    Full text:145
    References:42
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019