RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1997, Volume 61, Issue 5, Pages 35–62 (Mi izv150)  

This article is cited in 1 scientific paper (total in 1 paper)

On a weak (algebraic) extremum principle for a second-order parabolic system

L. A. Kamynin, B. N. Khimchenko


Abstract: The notion of a weak “algebraic” extremum principle (WAEP) is introduced for second-order parabolic systems. It is based on the representation of the (coefficient) matrix of the system as a sum of matrices that are similar to diagonal matrices and nilpotent matrices, and on the reduction of the system to a single equation. The validity of the WAEP is proved for a rather broad class of second-order parabolic systems with “full mixing”. The WAEP is applied to prove the uniqueness of the solution of the first boundary-value problem for the parabolic systems in question.

DOI: https://doi.org/10.4213/im150

Full text: PDF file (1515 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1997, 61:5, 933–959

Bibliographic databases:

MSC: 35K50, 35B50
Received: 20.11.1995

Citation: L. A. Kamynin, B. N. Khimchenko, “On a weak (algebraic) extremum principle for a second-order parabolic system”, Izv. RAN. Ser. Mat., 61:5 (1997), 35–62; Izv. Math., 61:5 (1997), 933–959

Citation in format AMSBIB
\Bibitem{KamKhi97}
\by L.~A.~Kamynin, B.~N.~Khimchenko
\paper On a~weak (algebraic) extremum principle for a~second-order parabolic system
\jour Izv. RAN. Ser. Mat.
\yr 1997
\vol 61
\issue 5
\pages 35--62
\mathnet{http://mi.mathnet.ru/izv150}
\crossref{https://doi.org/10.4213/im150}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1486697}
\zmath{https://zbmath.org/?q=an:0893.35045}
\transl
\jour Izv. Math.
\yr 1997
\vol 61
\issue 5
\pages 933--959
\crossref{https://doi.org/10.1070/im1997v061n05ABEH000150}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000071929200002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746786435}


Linking options:
  • http://mi.mathnet.ru/eng/izv150
  • https://doi.org/10.4213/im150
  • http://mi.mathnet.ru/eng/izv/v61/i5/p35

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. I. Kamynin, B. N. Khimchenko, “A priori estimates for the solution of the first boundary-value problem for a class of second-order parabolic systems”, Izv. Math., 65:4 (2001), 705–726  mathnet  crossref  crossref  mathscinet  zmath
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:220
    Full text:82
    References:52
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019