RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1984, Volume 48, Issue 5, Pages 999–1041 (Mi izv1505)  

This article is cited in 4 scientific papers (total in 4 papers)

Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. I, II

A. G. Eliseev


Abstract: A method is studied for constructing a regularized asymptotic expression for the solution of a Cauchy problem in the case of a multiple spectrum. The paper consists of two parts. The first part deals with the case when the operator is similar to a single Jordan cell, and the second with the case when the operator is similar to an operator with several Jordan cells. In both cases the structure matrix does not have degeneracies. The structure of a fundamental system of solutions is presented.
Bibliography: 13 titles.

Full text: PDF file (3078 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1985, 25:2, 315–357

Bibliographic databases:

UDC: 517.91/93
MSC: Primary 34A10, 34E05, 34E15, 34G10; Secondary 47A53, 47A55
Received: 22.01.1982

Citation: A. G. Eliseev, “Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. I, II”, Izv. Akad. Nauk SSSR Ser. Mat., 48:5 (1984), 999–1041; Math. USSR-Izv., 25:2 (1985), 315–357

Citation in format AMSBIB
\Bibitem{Eli84}
\by A.~G.~Eliseev
\paper Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~I,~II
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1984
\vol 48
\issue 5
\pages 999--1041
\mathnet{http://mi.mathnet.ru/izv1505}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=764307}
\zmath{https://zbmath.org/?q=an:0604.34033}
\transl
\jour Math. USSR-Izv.
\yr 1985
\vol 25
\issue 2
\pages 315--357
\crossref{https://doi.org/10.1070/IM1985v025n02ABEH001284}


Linking options:
  • http://mi.mathnet.ru/eng/izv1505
  • http://mi.mathnet.ru/eng/izv/v48/i5/p999

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Eliseev, “Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. III”, Math. USSR-Izv., 25:3 (1985), 475–500  mathnet  crossref  mathscinet  zmath
    2. S. A. Lomov, A. G. Eliseev, “Asymptotic integration of singularly perturbed problems”, Russian Math. Surveys, 43:3 (1988), 1–63  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. A. M. Dzhuraev, “Sovremennoe sostoyanie teorii singulyarnykh vozmuschenii”, Trudy Vserossiiskoi nauchnoi konferentsii (26–28 maya 2004 g.). Chast 3, Differentsialnye uravneniya i kraevye zadachi, Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2004, 79–82  mathnet  elib
    4. K. I. Chernyshov, “Cauchy operator of a non-stationary linear differential equation with a small parameter at the derivative”, Sb. Math., 196:8 (2005), 1165–1208  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:228
    Full text:81
    References:42
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019