RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1984, Volume 48, Issue 6, Pages 1171–1195 (Mi izv1513)  

This article is cited in 2 scientific papers (total in 2 papers)

Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. III

A. G. Eliseev


Abstract: This paper is the third part of work dealing with the construction of a regularized asymptotic expression for the solution of a nonhomogeneous Cauchy problem in a finite-dimensional space $E$. The limit operator has a Jordan structure. On the lines of the theory of branching a method is given for describing all possible singularities of the problem in the case when the structure matrix has degeneracies. As an example, a complete analysis of a Cauchy problem is given in three-dimensional space, along with a certain case in four-dimensional space.
Bibliography: 4 titles.

Full text: PDF file (1698 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1985, 25:3, 475–500

Bibliographic databases:

UDC: 517.91/93
MSC: Primary 34A10, 34E05, 34E15, 34G10; Secondary 47A53, 47A55
Received: 09.02.1982

Citation: A. G. Eliseev, “Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. III”, Izv. Akad. Nauk SSSR Ser. Mat., 48:6 (1984), 1171–1195; Math. USSR-Izv., 25:3 (1985), 475–500

Citation in format AMSBIB
\Bibitem{Eli84}
\by A.~G.~Eliseev
\paper Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~III
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1984
\vol 48
\issue 6
\pages 1171--1195
\mathnet{http://mi.mathnet.ru/izv1513}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=772111}
\zmath{https://zbmath.org/?q=an:0658.34052}
\transl
\jour Math. USSR-Izv.
\yr 1985
\vol 25
\issue 3
\pages 475--500
\crossref{https://doi.org/10.1070/IM1985v025n03ABEH001300}


Linking options:
  • http://mi.mathnet.ru/eng/izv1513
  • http://mi.mathnet.ru/eng/izv/v48/i6/p1171

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. A. Lomov, A. G. Eliseev, “Asymptotic integration of singularly perturbed problems”, Russian Math. Surveys, 43:3 (1988), 1–63  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. K. I. Chernyshov, “Cauchy operator of a non-stationary linear differential equation with a small parameter at the derivative”, Sb. Math., 196:8 (2005), 1165–1208  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:154
    Full text:63
    References:30
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019