RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. РАН. Сер. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Изв. АН СССР. Сер. матем., 1986, том 50, выпуск 4, страницы 675–710 (Mi izv1526)  

Эта публикация цитируется в 264 научных статьях (всего в 264 статьях)

Усреднение функционалов вариационного исчисления и теории упругости

В. В. Жиков


Аннотация: Работа посвящена развитию методов двойственности в теории усреднения нелинейных вариационных задач. Из вопросов общего характера подробно анализируется понятие регулярности, приводится пример нерегулярного лагранжиана и выводятся формулы двойственности с учетом проблемы регулярности.
Основное содержание относится к усреднению вариационных задач со случайными лагранжианами. Изучены три группы вопросов: 1) усреднение лагранжианов общего вида; 2) усреднение лагранжианов пластичности (теория предельной нагрузки); 3) усреднение вырожденных лагранжианов (задачи со случайными мягкими или жесткими включениями).
Библиография: 13 названий.

Полный текст: PDF файл (3847 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Mathematics of the USSR-Izvestiya, 1987, 29:1, 33–66

Реферативные базы данных:

УДК: 517.97
MSC: Primary 49A55, 73C60; Secondary 73B35
Поступило в редакцию: 22.05.1984

Образец цитирования: В. В. Жиков, “Усреднение функционалов вариационного исчисления и теории упругости”, Изв. АН СССР. Сер. матем., 50:4 (1986), 675–710; Math. USSR-Izv., 29:1 (1987), 33–66

Цитирование в формате AMSBIB
\RBibitem{Zhi86}
\by В.~В.~Жиков
\paper Усреднение функционалов вариационного исчисления и~теории упругости
\jour Изв. АН СССР. Сер. матем.
\yr 1986
\vol 50
\issue 4
\pages 675--710
\mathnet{http://mi.mathnet.ru/izv1526}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=864171}
\zmath{https://zbmath.org/?q=an:0599.49031}
\transl
\jour Math. USSR-Izv.
\yr 1987
\vol 29
\issue 1
\pages 33--66
\crossref{https://doi.org/10.1070/IM1987v029n01ABEH000958}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/izv1526
  • http://mi.mathnet.ru/rus/izv/v50/i4/p675

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Berdichevskii V., “The Problem of Averaging Random Structures in Terms of Distribution-Functions”, PMM-J. Appl. Math. Mech., 51:6 (1987), 704–711  crossref  mathscinet  isi
    2. В. В. Жиков, “Асимптотические задачи, связанные с уравнением теплопроводности в перфорированных областях”, Матем. сб., 181:10 (1990), 1283–1305  mathnet  mathscinet  zmath  adsnasa; V. V. Zhikov, “Asymptotic problems connected with the heat equation in perforated domains”, Math. USSR-Sb., 71:1 (1992), 125–147  crossref  isi
    3. В. В. Жиков, “Об оценках для усредненной матрицы и усредненного тензора.”, УМН, 46:3(279) (1991), 49–109  mathnet  mathscinet  zmath  adsnasa; V. V. Zhikov, “Estimates for the averaged matrix and the averaged tensor”, Russian Math. Surveys, 46:3 (1991), 65–136  crossref  isi
    4. Marcellini P., “Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions”, J. Differential Equations, 90:1 (1991), 1–30  crossref  mathscinet  zmath  isi
    5. Leonetti F., “Weak differentiability for solutions to nonlinear elliptic systems with $p,q$-growth conditions”, Ann. Mat. Pura Appl. (4), 162:1 (1992), 349–366  crossref  mathscinet  zmath  isi
    6. В. В. Жиков, “О переходе к пределу в нелинейных вариационных задачах”, Матем. сб., 183:8 (1992), 47–84  mathnet  mathscinet  zmath; V. V. Zhikov, “On passage to the limit in nonlinear variational problems”, Russian Acad. Sci. Sb. Math., 76:2 (1993), 427–459  crossref  isi
    7. Corbo Esposito A., De Arcagelis R., “Lavrentieff phenomenon and different processes of homogenization”, Comm. Partial Differential Equations, 17:9-10 (1992), 1503–1538  crossref  mathscinet  zmath
    8. О. О. Барабанов, В. В. Жиков, “Предельная нагрузка и усреднение”, Изв. РАН. Сер. матем., 57:5 (1993), 15–43  mathnet  mathscinet  zmath  adsnasa; O. O. Barabanov, V. V. Zhikov, “The limit load and homogenization”, Russian Acad. Sci. Izv. Math., 43:2 (1994), 205–231  crossref  isi
    9. Mascolo E., Papi G., “Local boundedness of minimizers of integrals of the calculus of variations”, Ann. Mat. Pura Appl. (4), 167:1 (1994), 323–339  crossref  mathscinet  zmath  isi
    10. Fan Xianling, “Regularity of nonstandard Lagrangians $f(x,\xi)$”, Nonlinear Anal., 27:6 (1996), 669–678  crossref  mathscinet  zmath  isi
    11. Chiadò Piat V., Coscia A., “Hölder continuity of minimizers of functionals with variable growth exponent”, Manuscripta Math., 93:1 (1997), 283–299  crossref  mathscinet  zmath  isi
    12. В. В. Жиков, М. Е. Рычаго, “Усреднение нелинейных эллиптических уравнений второго порядка в перфорированных областях”, Изв. РАН. Сер. матем., 61:1 (1997), 69–88  mathnet  crossref  mathscinet  zmath; V. V. Zhikov, M. E. Rychago, “Homogenization of non-linear second-order elliptic equations in perforated domains”, Izv. Math., 61:1 (1997), 69–88  crossref  isi
    13. Kohn R.V., Little Th.D., “Some model problems of polycrystal plasticity with deficient basic crystals”, SIAM J. Appl. Math., 59:1 (1998), 172–197  crossref  mathscinet  isi
    14. Fan Xianling, Zhao Dun, “A class of De Giorgi type and Hölder continuity”, Nonlinear Anal., 36:3 (1999), 295–318  crossref  mathscinet  zmath  isi
    15. Fan Xianling, Zhao Dun, “On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$”, J. Math. Anal. Appl., 263:2 (2001), 424–446  crossref  mathscinet  zmath  isi
    16. Fan Xianling, Shen Jishen, Zhao Dun, “Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$”, J. Math. Anal. Appl., 262:2 (2001), 749–760  crossref  mathscinet  zmath  isi
    17. Fan Xianling, Zhao Yuanzhang, Zhao Dun, “Compact imbedding theorems with symmetry of Strauss-Lions type for the space $W^{1,p(x)}(\Omega)$”, J. Math. Anal. Appl., 255:1 (2001), 333–348  crossref  mathscinet  zmath  isi
    18. Pick L., Růžička M., “An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded”, Expo. Math., 19:4 (2001), 369–371  crossref  mathscinet  zmath
    19. Fan Xian-Ling, Zhang Qi-Hu, “Existence of solutions for $p(x)$-Laplacian Dirichlet problem”, Nonlinear Anal., 52:8 (2003), 1843–1852  crossref  mathscinet  zmath  isi
    20. Fan Xian-Ling, Wu Hong-Qing, Wang Fei-Zhi, “Hartman-type results for $p(t)$-Laplacian systems”, Nonlinear Anal., 52:2 (2003), 585–594  crossref  mathscinet  zmath  isi
    21. Fan Xian-Ling, Fan Xing, “A Knobloch-type result for $p(t)$-Laplacian systems”, J. Math. Anal. Appl., 282:2 (2003), 453–464  crossref  mathscinet  zmath  isi
    22. В. В. Жиков, “О плотности гладких функций в пространстве Соболева–Орлича”, Краевые задачи математической физики и смежные вопросы теории функций. 35, Зап. научн. сем. ПОМИ, 310, ПОМИ, СПб., 2004, 67–81  mathnet  mathscinet  zmath  elib; V. V. Zhikov, “On density of smooth functions in Sobolev–Orlich spaces”, J. Math. Sci. (N. Y.), 132:3 (2006), 285–294  crossref
    23. Ю. А. Алхутов, О. В. Крашенинникова, “Непрерывность в граничных точках решений квазилинейных эллиптических уравнений с нестандартным условием роста”, Изв. РАН. Сер. матем., 68:6 (2004), 3–60  mathnet  crossref  mathscinet  zmath; Yu. A. Alkhutov, O. V. Krasheninnikova, “Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition”, Izv. Math., 68:6 (2004), 1063–1117  crossref  isi  elib
    24. Fan Xianling, Han Xiaoyou, “Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbf R^N$”, Nonlinear Anal., 59:1-2 (2004), 173–188  crossref  mathscinet  zmath
    25. El Hamidi A., “Existence results to elliptic systems with nonstandard growth conditions”, J. Math. Anal. Appl., 300:1 (2004), 30–42  crossref  mathscinet  zmath  isi
    26. Galewski M., “A new variational method for the $p(x)$-Laplacian equation”, Bull. Austral. Math. Soc., 72:1 (2005), 53–65  crossref  mathscinet  zmath
    27. Zhang Qihu, “A strong maximum principle for differential equations with nonstandard $p(x)$-growth conditions”, J. Math. Anal. Appl., 312:1 (2005), 24–32  crossref  mathscinet  zmath  isi  elib
    28. Fan Xianling, Zhang Qihu, Zhao Dun, “Eigenvalues of $p(x)$-Laplacian Dirichlet problem”, J. Math. Anal. Appl., 302:2 (2005), 306–317  crossref  mathscinet  zmath  isi  elib
    29. Ю. А. Алхутов, “О гёльдеровой непрерывности $p(x)$-гармонических функций”, Матем. сб., 196:2 (2005), 3–28  mathnet  crossref  mathscinet  zmath  elib; Yu. A. Alkhutov, “Hölder continuity of $p(x)$-harmonic functions”, Sb. Math., 196:2 (2005), 147–171  crossref  isi  elib
    30. Galewska E., Galewski M., “On the stability of solutions for the $p(x)$-Laplacian equation and some applications to optimisation problems with state constraints”, ANZIAM J., 48:2 (2006), 245–257  crossref  mathscinet  zmath  isi
    31. Mihăilescu M., “Elliptic problems in variable exponent spaces”, Bull. Austral. Math. Soc., 74:2 (2006), 197–206  crossref  mathscinet  zmath  elib
    32. Dinu T.-L., “Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent”, Nonlinear Anal., 65:7 (2006), 1414–1424  crossref  mathscinet  zmath  isi
    33. Zhang Qihu, “Existence of radial solutions for $p(x)$-Laplacian equations in $\mathbb R^N$”, J. Math. Anal. Appl., 315:2 (2006), 506–516  crossref  mathscinet  zmath  isi
    34. Zhang Qihu, “Oscillatory property of solutions for $p(t)$-Laplacian equations”, J. Inequal. Appl., 2007 (2007), 58548, 8 pp.  crossref  mathscinet  zmath  isi
    35. Galewski M., Płócienniczak M., “On existence and stability of solutions to elliptic systems with generalised growth”, Bull. Austral. Math. Soc., 76:3 (2007), 453–470  crossref  mathscinet  zmath
    36. Galewski M., Płócienniczak M., “On the nonlinear Dirichlet problem with $p(x)$-Laplacian”, Bull. Austral. Math. Soc., 75:3 (2007), 381–395  crossref  mathscinet  zmath
    37. Galewski M., “A note on the stability and the approximation of solutions for a Dirichlet problem with $p(x)$-Laplacian”, ANZIAM J, 49:1 (2007), 75–83  crossref  mathscinet  zmath  isi
    38. Galewski M., “On a Dirichlet problem with generalized $p(x)$-Laplacian and some applications”, Numer. Funct. Anal. Optim., 28:9-10 (2007), 1087–1111  crossref  mathscinet  zmath  isi
    39. Kokilashvili V., Meskhi A., “Weighted criteria for generalized fractional maximal functions and potentials in Lebesgue spaces with variable exponent”, Integral Transforms Spec. Funct., 18:9 (2007), 609–628  crossref  mathscinet  zmath  isi  elib
    40. Mihăilescu M., “Existence and multiplicity of solutions for a Neumann problem involving the $p(x)$-Laplace operator”, Nonlinear Anal., 67:5 (2007), 1419–1425  crossref  mathscinet  zmath  isi
    41. Zhang Qihu, “Existence of positive solutions for elliptic systems with nonstandard $p(x)$-growth conditions via sub-supersolution method”, Nonlinear Anal., 67:4 (2007), 1055–1067  crossref  mathscinet  zmath  isi
    42. Fan Xianling, Zhao Yuanzhang, “Nodal solutions of $p(x)$-Laplacian equations”, Nonlinear Anal., 67:10 (2007), 2859–2868  crossref  mathscinet  zmath  isi
    43. Zhang Qihu, “Existence of positive solutions for a class of $p(x)$-Laplacian systems”, J. Math. Anal. Appl., 333:2 (2007), 591–603  crossref  mathscinet  zmath  isi
    44. Zhang Qihu, “Existence of solutions for weighted $p(r)$-Laplacian system boundary value problems”, J. Math. Anal. Appl., 327:1 (2007), 127–141  crossref  mathscinet  zmath  isi
    45. Zhang Xuxi, Liu Xianping, “The local boundedness and Harnack inequality of $p(x)$-Laplace equation”, J. Math. Anal. Appl., 332:1 (2007), 209–218  crossref  mathscinet  zmath  isi  elib
    46. Zhang Qihu, “Existence and asymptotic behavior of blow-up solutions to a class of $p(x)$-Laplacian problems”, J. Math. Anal. Appl., 329:1 (2007), 472–482  crossref  mathscinet  zmath  isi
    47. Mashiyev R.A., Çekiç B., Mamedov F.I., Ogras S., “Hardy's inequality in power-type weighted $L^{p(\cdot)}(0,\infty)$ spaces”, J. Math. Anal. Appl., 334:1 (2007), 289–298  crossref  mathscinet  zmath  isi
    48. Galewski M., “On the existence and stability of solutions for Dirichlet problem with $p(x)$-Laplacian”, J. Math. Anal. Appl., 326:1 (2007), 352–362  crossref  mathscinet  zmath  isi
    49. Mihăilescu M., Rădulescu V., “Continuous spectrum for a class of nonhomogeneous differential operators”, Manuscripta Math., 125:2 (2008), 157–167  crossref  mathscinet  zmath  isi  elib
    50. Boureanu M.-M.., Mihăilescu M., “Existence and multiplicity of solutions for a Neumann problem involving variable exponent growth conditions”, Glasg. Math. J., 50:3 (2008), 565–574  crossref  mathscinet  zmath  isi
    51. Mihăilescu M., “On a class of nonlinear problems involving a $p(x)$-Laplace type operator”, Czechoslovak Math. J., 58:1 (2008), 155–172  crossref  mathscinet  zmath  isi
    52. В. В. Жиков, С. Е. Пастухова, “Усреднение вырождающихся эллиптических уравнений”, Сиб. матем. журн., 49:1 (2008), 101–124  mathnet  mathscinet  zmath  elib; V. V. Zhikov, S. E. Pastukhova, “Homogenization of degenerate elliptic equations”, Siberian Math. J., 49:1 (2008), 80–101  crossref  isi  elib
    53. Ю. А. Алхутов, О. В. Крашенинникова, “О непрерывности решений эллиптических уравнений с переменным порядком нелинейности”, Дифференциальные уравнения и динамические системы, Сборник статей, Тр. МИАН, 261, МАИК «Наука/Интерпериодика», М., 2008, 7–15  mathnet  mathscinet  zmath  elib; Yu. A. Alkhutov, O. V. Krasheninnikova, “On the Continuity of Solutions to Elliptic Equations with Variable Order of Nonlinearity”, Proc. Steklov Inst. Math., 261 (2008), 1–10  crossref  isi  elib
    54. Р. А. Бандалиев, “Об одном неравенстве в пространстве Лебега со смешанной нормой и с переменным показателем суммируемости”, Матем. заметки, 84:3 (2008), 323–333  mathnet  crossref  mathscinet  zmath  elib; R. A. Bandaliev, “On an Inequality in Lebesgue Space with Mixed Norm and with Variable Summability Exponent”, Math. Notes, 84:3 (2008), 303–313  crossref  isi
    55. Zhang Qihu, Liu Xiaopin, Qiu Zhimei, “The method of subsuper solutions for weighted $p(r)$-Laplacian equation boundary value problems”, J. Inequal. Appl., 2008 (2008), 621621, 19 pp.  crossref  mathscinet  zmath  isi
    56. Zhang Qihu, Qiu Zheimei, Liu Xiaopin, “Existence of solutions for a class of weighted $p(t)$-Laplacian system multipoint boundary value problems”, J. Inequal. Appl., 2008, 791762, 18 pp.  crossref  mathscinet  zmath  isi
    57. Liu Qiao, “Existence of three solutions for $p(x)$-Laplacian equations”, Nonlinear Anal., 68:7 (2008), 2119–2127  crossref  mathscinet  zmath  isi
    58. Yao Jinghua, Wang Xiaoyan, “On an open problem involving the $p(x)$-Laplacian—A further study on the multiplicity of weak solutions to $p(x)$-Laplacian equations”, Nonlinear Anal., 69:4 (2008), 1445–1453  crossref  mathscinet  zmath  isi  elib
    59. Yao Jinghua, “Solutions for Neumann boundary value problems involving $p(x)$-Laplace operators”, Nonlinear Anal., 68:5 (2008), 1271–1283  crossref  mathscinet  zmath  isi  elib
    60. Xu Xianchun, An Yukun, “Existence and multiplicity of solutions for elliptic systems with nonstandard growth condition in $\mathbf R^N$”, Nonlinear Anal., 68:4 (2008), 956–968  crossref  mathscinet  zmath  isi
    61. Galewski M., “On a Dirichlet problem with $p(x)$-Laplacian”, J. Math. Anal. Appl., 337:1 (2008), 281–291  crossref  mathscinet  zmath  isi
    62. Deng Shao-Gao, “Eigenvalues of the $p(x)$-Laplacian Steklov problem”, J. Math. Anal. Appl., 339:2 (2008), 925–937  crossref  mathscinet  zmath  isi
    63. Zhang Qihu, “Existence of solutions for $p(x)$-Laplacian equations with singular coefficients in $\mathbb R^N$”, J. Math. Anal. Appl., 348:1 (2008), 38–50  crossref  mathscinet  zmath  isi
    64. В. В. Жиков, “Разрешимость трехмерной задачи о термисторе”, Дифференциальные уравнения и динамические системы, Сборник статей, Тр. МИАН, 261, МАИК «Наука/Интерпериодика», М., 2008, 101–114  mathnet  mathscinet  zmath  elib; V. V. Zhikov, “Solvability of the Three-Dimensional Thermistor Problem”, Proc. Steklov Inst. Math., 261 (2008), 98–111  crossref  isi  elib
    65. И. И. Шарапудинов, “О базисности системы полиномов Лежандра в пространстве Лебега $L^{p(x)}(-1,1)$ с переменным показателем $p(x)$”, Матем. сб., 200:1 (2009), 137–160  mathnet  crossref  mathscinet  zmath  adsnasa  elib; I. I. Sharapudinov, “The basis property of the Legendre polynomials in the variable exponent Lebesgue space $L^{p(x)}(-1,1)$”, Sb. Math., 200:1 (2009), 133–156  crossref  isi  elib
    66. Shen Zifei, Qian Chenyin, “Solutions and multiple solutions for $p(x)$-Laplacian equations with nonlinear boundary condition”, Chin. Ann. Math. Ser. B, 30:4 (2009), 397–412  crossref  mathscinet  zmath  isi
    67. Afrouzi G.A., Ghorbani H., “Positive solutions for a class of $p(x)$-Laplacian problems”, Glasg. Math. J., 51:3 (2009), 571–578  crossref  mathscinet  zmath  isi
    68. В. В. Жиков, “К технике предельного перехода в нелинейных эллиптических уравнениях”, Функц. анализ и его прил., 43:2 (2009), 19–38  mathnet  crossref  mathscinet  zmath; V. V. Zhikov, “On the Technique for Passing to the Limit in Nonlinear Elliptic Equations”, Funct. Anal. Appl., 43:2 (2009), 96–112  crossref  isi  elib
    69. Liskevich V., “Hölder continuity of solutions to an anisotropic elliptic equation”, Nonlinear Anal., 71:5-6 (2009), 1699–1708  crossref  mathscinet  zmath  isi
    70. Guowei Dai, “Infinitely many non-negative solutions for a Dirichlet problem involving $p(x)$-Laplacian”, Nonlinear Anal., 71:11 (2009), 5840–5849  crossref  mathscinet  zmath  isi  elib
    71. Dai Guowei, Liu Wulong, “Three solutions for a differential inclusion problem involving the $p(x)$-Laplacian”, Nonlinear Anal., 71:11 (2009), 5318–5326  crossref  mathscinet  zmath  isi  elib
    72. Mihăilescu M., Rădulescu V., Tersian S., “Eigenvalue problems for anisotropic discrete boundary value problems”, J. Difference Equ. Appl., 15:6 (2009), 557–567  crossref  mathscinet  zmath  isi
    73. Guo Xiaoli, Lu Mingxin, Zhang Qihu, “Infinitely many periodic solutions for variable exponent systems”, J. Inequal. Appl., 2009:1 (2009), 714179, 10 pp.  crossref  mathscinet  zmath  isi
    74. Liu Jingjing, Shi Xiayang, “Existence of three solutions for a class of quasilinear elliptic systems involving the $(p(x),q(x))$-Laplacian”, Nonlinear Anal., 71:1-2 (2009), 550–557  crossref  mathscinet  zmath  isi
    75. Dai Guowei, “Infinitely many solutions for a hemivariational inequality involving the $p(x)$-Laplacian”, Nonlinear Anal., 71:1-2 (2009), 186–195  crossref  mathscinet  zmath  isi  elib
    76. Dai Guowei, “Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian”, Nonlinear Anal., 70:6 (2009), 2297–2305  crossref  mathscinet  zmath  isi  elib
    77. Dai Guowei, “Three solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian”, Nonlinear Anal., 70:10 (2009), 3755–3760  crossref  mathscinet  zmath  isi  elib
    78. Dai Guowei, “Infinitely many solutions for a differential inclusion problem in involving the $p(x)$-Laplacian”, Nonlinear Anal., 71:3-4 (2009), 1116–1123  crossref  mathscinet  zmath  isi  elib
    79. Yao Jinghua, Wang Xiaoyan, “Compact imbeddings between variable exponent spaces with unbounded underlying domain”, Nonlinear Anal., 70:10 (2009), 3472–3482  crossref  mathscinet  zmath  isi
    80. Wang Xian-Jun, Yuan Rong, “Existence of periodic solutions for $p(x)$-Laplacian systems”, Nonlinear Anal., 70:2 (2009), 866–880  crossref  mathscinet  zmath  isi
    81. Zhang Qihu, Qiu Zhimei, Liu Xiaopin, “Existence of multiple solutions for weighted $p(r)$-Laplacian equation Dirichlet problems”, Nonlinear Anal., 70:10 (2009), 3721–3729  crossref  mathscinet  zmath  isi
    82. Wang Lin-Lin, Fan Yong-Hong, Ge Wei-Gao, “Existence and multiplicity of solutions for a Neumann problem involving the -Laplace operator”, Nonlinear Anal., 71:9 (2009), 4259–4270  crossref  mathscinet  zmath  isi
    83. Zhang Qihu, “Existence and asymptotic behavior of positive solutions for variable exponent elliptic systems”, Nonlinear Anal., 70:1 (2009), 305–316  crossref  mathscinet  zmath  isi
    84. Dai Guowei, “Three symmetric solutions for a differential inclusion system involving the $(p(x),q(x))$-Laplacian in $\mathbb R^N$”, Nonlinear Anal., 71:5-6 (2009), 1763–1771  crossref  mathscinet  zmath  isi  elib
    85. Dai Guowei, “Infinitely many solutions for a $p(x)$-Laplacian equation in $\mathbb R^N$”, Nonlinear Anal., 71:3-4 (2009), 1133–1139  crossref  mathscinet  zmath  isi  elib
    86. Pinasco J.P., “Blow-up for parabolic and hyperbolic problems with variable exponents”, Nonlinear Anal., 71:3-4 (2009), 1094–1099  crossref  mathscinet  zmath  isi
    87. Zhang Qihu, Liu Xiaopin, Qiu Zhimei, “On the boundary blow-up solutions of $p(x)$-Laplacian equations with singular coefficient”, Nonlinear Anal., 70:11 (2009), 4053–4070  crossref  mathscinet  zmath  isi  elib
    88. Costea N., Mihăilescu M., “On an eigenvalue problem involving variable exponent growth conditions”, Nonlinear Anal., 71:9 (2009), 4271–4278  crossref  mathscinet  zmath  isi
    89. Zhang Qihu, Qiu Zhimei, Liu Xiaopin, “Existence of solutions and nonnegative solutions for weighted $p(r)$-Laplacian impulsive system multi-point boundary value problems”, Nonlinear Anal., 71:9 (2009), 3814–3825  crossref  mathscinet  zmath  isi  elib
    90. Fortini R., Mugnai D., Pucci P., “Maximum principles for anisotropic elliptic inequalities”, Nonlinear Anal., 70:8 (2009), 2917–2929  crossref  mathscinet  zmath  isi  elib
    91. Moschetto D.S., “A quasilinear Neumann problem involving the -Laplacian”, Nonlinear Anal., 71:7-8 (2009), 2739–2743  crossref  mathscinet  zmath  isi
    92. Zhang Qihu, Liu Xiaopin, Qiu Zhimei, “Existence of solutions for weighted $p(r)$-Laplacian impulsive system periodic-like boundary value problems”, Nonlinear Anal., 71:9 (2009), 3596–3611  crossref  mathscinet  zmath  isi  elib
    93. Zhang Qihu, Liu Xiaopin, Qiu Zhimei, “Existence of solutions for weighted -Laplacian system multi-point boundary value problems”, Nonlinear Anal., 71:9 (2009), 3715–3727  crossref  mathscinet  zmath  isi
    94. Zhang Qihu, Qiu Zhimei, Liu Xiaopin, “Existence of solutions for prescribed variable exponent mean curvature system boundary value problems”, Nonlinear Anal., 71:7-8 (2009), 2964–2975  crossref  mathscinet  zmath  isi
    95. Deng Shao-Gao, “Positive solutions for Robin problem involving the $p(x)$-Laplacian”, J. Math. Anal. Appl., 360:2 (2009), 548–560  crossref  mathscinet  zmath  isi  elib
    96. Fan Xianling, “Remarks on eigenvalue problems involving the $p(x)$-Laplacian”, J. Math. Anal. Appl., 352:1 (2009), 85–98  crossref  mathscinet  zmath  isi  elib
    97. Zhang Qihu, Liu Xiaopin, Qiu Zhimei, “Existence of solutions and multiple solutions for a class of weighted $p(r)$-Laplacian system”, J. Math. Anal. Appl., 355:2 (2009), 620–633  crossref  mathscinet  zmath  isi
    98. Dai Guowei, Hao Ruifang, “Existence of solutions for a $p(x)$-Kirchhoff-type equation”, J. Math. Anal. Appl., 359:1 (2009), 275–284  crossref  mathscinet  zmath  isi  elib
    99. Dai Guowei, Liu Duchao, “Infinitely many positive solutions for a $p(x)$-Kirchhoff-type equation”, J. Math. Anal. Appl., 359:2 (2009), 704–710  crossref  mathscinet  zmath  isi  elib
    100. Dai Guowei, “Arbitrarily many solutions for a perturbed $p(x)$-Laplacian equation involving oscillatory terms”, Appl. Math. Comput., 215:7 (2009), 2544–2556  crossref  mathscinet  zmath  isi  elib
    101. Deng Shao-Gao, “A local mountain pass theorem and applications to a double perturbed $p(x)$-Laplacian equations”, Appl. Math. Comput., 211:1 (2009), 234–241  crossref  mathscinet  zmath  isi
    102. Meskhi A., “Measure of Non-Compactness For Integral Operators in Weighted Lebesgue Spaces”, Measure of Non-Compactness For Integral Operators in Weighted Lebesgue Spaces, Nova Science Publishers, Inc, 2009, 1–121  isi
    103. Edmunds D.E., “Embeddings, Hardy operators and nonlinear problems”, Rev. Mat. Complut., 23:2 (2010), 267–319  crossref  mathscinet  zmath  isi
    104. Zhi Guizhen, Zhao Liang, Chen Guangxia, Wang Shujuan, Zhang Qihu, “Existence of solutions of weighted $p(r)$-Laplacian impulsive integro-differential system periodic-like boundary value problems”, J. Inequal. Appl., 2010 (2010), 751709, 24 pp.  crossref  mathscinet  zmath  isi
    105. Fu Yongqiang, Yu Mei, “Existence of solutions for the $p(x)$-Laplacian problem with singular term”, Bound. Value Probl., 2010 (2010), 584843, 20 pp.  crossref  mathscinet  zmath  isi  elib
    106. Dinca G., Isaia F., “Generalized Pohožaev and Pucci-Serrin identities and non-existence results for $p(x)$-Laplacian type equations”, Rend. Circ. Mat. Palermo (2), 59:1 (2010), 1–46  crossref  mathscinet  zmath
    107. Mihăilescu M., Moroşanu G., “On an eigenvalue problem for an anisotropic elliptic equation involving variable exponents”, Glasg. Math. J., 52:3 (2010), 517–527  crossref  mathscinet  zmath  isi
    108. О. В. Пугачев, “О замыкаемости и сходимости форм Дирихле”, Дифференциальные уравнения и динамические системы, Сборник статей, Тр. МИАН, 270, МАИК «Наука/Интерпериодика», М., 2010, 220–225  mathnet  mathscinet  zmath  elib; O. V. Pugachev, “On the closability and convergence of Dirichlet forms”, Proc. Steklov Inst. Math., 270 (2010), 216–221  crossref  isi
    109. Ge Bin, Xue Xiao-ping, Guo Meng-shu, “Three solutions to inequalities of Dirichlet problem driven by $p(x)$-Laplacian”, Appl. Math. Mech. (English Ed.), 31:10 (2010), 1283–1292  crossref  mathscinet  zmath  isi
    110. Harjulehto P., Hasto P., Le U.V., Nuortio M., “Overview of differential equations with non-standard growth”, Nonlinear Anal., 72:12 (2010), 4551–4574  crossref  mathscinet  zmath  isi  elib
    111. Dai Guowei, Wei Jian, “Infinitely many non-negative solutions for a $p(x)$-Kirchhoff-type problem with Dirichlet boundary condition”, Nonlinear Anal., 73:10 (2010), 3420–3430  crossref  mathscinet  zmath  isi  elib
    112. Mihăilescu M., Moroşanu G., “Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions”, Appl. Anal., 89:2 (2010), 257–271  crossref  mathscinet  zmath  isi  elib
    113. Qian Chenyin, Shen Zifei, Yang Minbo, “Existence of solutions for $p(x)$-Laplacian nonhomogeneous Neumann problems with indefinite weight”, Nonlinear Anal., 11:1 (2010), 446–458  crossref  mathscinet  zmath  isi
    114. Qian Chenyin, Shen Zifei, “Existence and multiplicity of solutions for $p(x)$-Laplacian equation with nonsmooth potential”, Nonlinear Anal., 11:1 (2010), 106–116  crossref  mathscinet  zmath  isi
    115. Ge Bin, Xue Xiaoping, “Multiple solutions for inequality Dirichlet problems by the $p(x)$-Laplacian”, Nonlinear Anal. Real World Appl., 11:4 (2010), 3198–3210  crossref  mathscinet  zmath  isi
    116. Ge Bin, Xue Xiaoping, Zhou Qingmei, “The existence of radial solutions for differential inclusion problems in $\mathbb R^N$ involving the $p(x)$-Laplacian”, Nonlinear Anal., 73:3 (2010), 622–633  crossref  mathscinet  zmath  isi
    117. Zhang Qihu, Wang Yan, Qiu Zhimei, “Existence of solutions and boundary asymptotic behavior of $p(r)$-Laplacian equation multi-point boundary value problems”, Nonlinear Anal., 72:6 (2010), 2950–2973  crossref  mathscinet  zmath  isi
    118. Zhang Qihu, Qiu Zhimei, Dong Rong, “Existence and asymptotic behavior of positive solutions for a variable exponent elliptic system without variational structure”, Nonlinear Anal., 72:1 (2010), 354–363  crossref  mathscinet  zmath  isi
    119. Zhang Qihu, Guo Yunrui, Chen Guangxia, “Existence and multiple solutions for a variable exponent system”, Nonlinear Anal., 73:12 (2010), 3788–3804  crossref  mathscinet  zmath  isi  elib
    120. Fu Yongqiang, Yu Mei, “The Dirichlet problem of higher order quasilinear elliptic equation”, J. Math. Anal. Appl., 363:2 (2010), 679–689  crossref  mathscinet  zmath  isi
    121. Li Yin, Yunrui Guo, Jing Yang, Bibo Lu, Qihu Zhang, “Existence and Asymptotic Behavior of Boundary Blow-Up Solutions for Weightedp(x)-Laplacian Equations with Exponential Nonlinearities”, Abstract and Applied Analysis, 2010 (2010), 1  crossref
    122. Lukeš J., Pick L., Pokorný D., “On geometric properties of the spaces $L^{p(x)}$”, Rev. Mat. Complut., 24:1 (2011), 115–130  crossref  mathscinet  zmath  isi
    123. Gasiński L., Papageorgiou N.S., “Anisotropic nonlinear Neumann problems”, Calc. Var. Partial Differential Equations, 42:3-4 (2011), 323–354  crossref  mathscinet  zmath  isi
    124. Ciarlet Ph.G., Dinca G., “A Poincaré inequality in a Sobolev space with a variable exponent”, Chin. Ann. Math. Ser. B, 32:3 (2011), 333–342  crossref  mathscinet  isi
    125. Ge Bin, Xue Xiaoping, Zhou Qingmei, “Existence of at least five solutions for a differential inclusion problem involving the $p(x)$-Laplacian”, Nonlinear Anal., 12:4 (2011), 2304–2318  crossref  mathscinet  zmath  isi
    126. Dai Guowei, Ma Ruyun, “Solutions for a $p(x)$-Kirchhoff type equation with Neumann boundary data”, Nonlinear Anal., 12:5 (2011), 2666–2680  crossref  mathscinet  zmath  isi  elib
    127. Bonanno G., Bisci G.M., Rădulescu V., “Existence of three solutions for a non-homogeneous Neumann problem through Orlicz–Sobolev spaces”, Nonlinear Anal., 74:14 (2011), 4785–4795  crossref  mathscinet  zmath  isi
    128. Yoshida N., “Picone identities for half-linear elliptic operators with $p(x)$-Laplacians and applications to Sturmian comparison theory”, Nonlinear Anal., 74:16 (2011), 5631–5642  crossref  mathscinet  zmath  isi
    129. Aouaoui S., “Multiplicity result for some nonlocal anisotropic equation via nonsmooth critical point theory approach”, Appl. Math. Comput., 218:2 (2011), 532–541  crossref  mathscinet  zmath  isi
    130. Avci M., Cekic B., Mashiyev R.A., “Existence and multiplicity of the solutions of the $p(x)$-Kirchhoff type equation via genus theory”, Math. Meth. Appl. Sci, 34:14 (2011), 1751–1759  crossref  mathscinet  zmath  isi
    131. Ge Bin, Xue Xiaoping, Zhou Qingmei, “Existence of periodic solutions for a differential inclusion systems involving the $p(t)$-Laplacian”, Acta Math. Sci. Ser. B Engl. Ed., 31:5 (2011), 1786–1802  crossref  mathscinet  zmath
    132. Kandilakis D.A., Sidiropoulos N., “Elliptic problems involving the $p(x)$-Laplacian with competing nonlinearities”, J. Math. Anal. Appl., 379:1 (2011), 378–387  crossref  mathscinet  zmath  isi
    133. Xianling Fan, “Anisotropic variable exponent Sobolev spaces and $\overarrow{p(x)}$-Laplacian equations”, Complex Var. Elliptic Equ., 56:7-9 (2011), 623–642  crossref  mathscinet  zmath  isi
    134. Boureanu M.-M., Pucci P., Rădulescu V.D., “Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponent”, Complex Var. Elliptic Equ., 56:7-9 (2011), 755–767  crossref  mathscinet  zmath  isi
    135. Alkhutov Yu., “Elliptic problems with nonstandard conditions of growth: Zhikov's approach”, Complex Var. Elliptic Equ., 56:7-9 (2011), 559–571  crossref  mathscinet  zmath  isi  elib
    136. Mihăilescu M., Rădulescu V., Stancu-Dumitru D., “A Caffarelli–Kohn–Nirenberg-type inequality with variable exponent and applications to PDEs”, Complex Var. Elliptic Equ., 56:7-9 (2011), 659–669  crossref  mathscinet  zmath  isi
    137. Yoshida N., “Oscillation criteria for half-linear elliptic inequalities with $p(x)$-Laplacians via Riccati method”, Nonlinear Anal., 74:7 (2011), 2563–2575  crossref  mathscinet  zmath  isi
    138. Deng Shao-Gao, Wang Qin, Cheng Shijuan, “On the $p(x)$-Laplacian Robin eigenvalue problem”, Appl. Math. Comput., 217:12 (2011), 5643–5649  crossref  mathscinet  zmath  isi
    139. Mihăilescu M., Varga C., “Multiplicity results for some elliptic problems with nonlinear boundary conditions involving variable exponents”, Comput. Math. Appl., 62:9 (2011), 3464–3471  crossref  mathscinet  zmath  isi
    140. Kone B., Ouaro S., “Weak solutions for anisotropic discrete boundary value problems”, J. Difference Equ. Appl., 17:10 (2011), 1537–1547  crossref  mathscinet  zmath  isi
    141. Guiro A., Nyanquini I., Ouaro S., “On the solvability of discrete nonlinear Neumann problems involving the $p(x)$-Laplacian”, Adv. Difference Equ., 2011 (2011), 32, 14 pp.  crossref  mathscinet  zmath  isi
    142. De Arcangelis R., “The Lavrentieff phenomenon for quadratic functionals”, Proc. Roy. Soc. Edinburgh Sect. A, 125:02 (2011), 329–339  crossref  mathscinet
    143. Yin Li, Guo Yunrui, Zhi Guizhen, Zhang Qihu, “Existence of solutions for weighted $p(r)$-Laplacian impulsive system mixed type boundary value problems”, Bound. Value Probl., 2011 (2011), 42, 22 pp.  crossref  mathscinet  isi
    144. Zhang Qihu, “Existence, nonexistence and asymptotic behavior of boundary blow-up solutions to $p(x)$-Laplacian problems with singular coefficient”, Nonlinear Anal., 74:6 (2011), 2045–2061  crossref  mathscinet  zmath  isi
    145. Ji Chao, “Remarks on the existence of three solutions for the $p(x)$-Laplacian equations”, Nonlinear Anal., 74:9 (2011), 2908–2915  crossref  mathscinet  zmath  isi
    146. Diening L., Harjulehto P., Hästö P., Růžička M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011, x+509 pp.  crossref  mathscinet  zmath  isi
    147. Boureanu M.-M., Preda F., “Infinitely many solutions for elliptic problems with variable exponent and nonlinear boundary conditions”, Nonlinear Differ. Equ. Appl., 19:2 (2012), 235–251  crossref  mathscinet  zmath  isi
    148. Qian Chenyin, Shen Zifei, Zhu Junqiao, “Multiplicity results for a differential inclusion problem with non-standard growth”, J. Math. Anal. Appl., 386:1 (2012), 364–377  crossref  mathscinet  zmath  isi
    149. Galewski M., Gła̧b S., “On the discrete boundary value problem for anisotropic equation”, J. Math. Anal. Appl., 386:2 (2012), 956–965  crossref  mathscinet  zmath  isi
    150. Diening L., Nägele P., Růžička M., “Monotone operator theory for unsteady problems in variable exponent spaces”, Complex Var. Elliptic Equ., 57:11 (2012), 1209–1231  crossref  mathscinet  zmath  isi
    151. Boureanu M.-M., Rădulescu V.D., “Anisotropic Neumann problems in Sobolev spaces with variable exponent”, Nonlinear Anal., 75:12 (2012), 4471–4482  crossref  mathscinet  zmath  isi
    152. Aouaoui S., “On some degenerate quasilinear equations involving variable exponents”, Nonlinear Anal., 75:4 (2012), 1843–1858  crossref  mathscinet  zmath  isi
    153. Chen Peng, Tang X.H., Agarwal R.P., “Existence of homoclinic solutions for $p(n)$-Laplacian Hamiltonian systems on Orlicz sequence spaces”, Math. Comput. Modelling, 55:3-4 (2012), 989–1002  crossref  mathscinet  zmath  isi
    154. Yin Honghui, “Existence of three solutions for a Neumann problem involving the $p(x)$-Laplace operator”, Math. Methods Appl. Sci., 35:3 (2012), 307–313  crossref  mathscinet  zmath  isi
    155. Cekic B., Kalinin A.V., Mashiyev R.A., Avci M., “$L^{p(x)}(\Omega)$-estimates of vector fields and some applications to magnetostatics problems”, J. Math. Anal. Appl., 389:2 (2012), 838–851  crossref  mathscinet  zmath  isi  elib
    156. Chen Peng, Tang X.H., Agarwal R.P., “Infinitely many homoclinic solutions for nonautonomous $p(t)$-Laplacian Hamiltonian systems”, Comput. Math. Appl., 63:4 (2012), 751–763  crossref  mathscinet  zmath  isi
    157. Ge Bin, Zhou Qing-Mei, Xue Xiao-Ping, “Infinitely many solutions for a differential inclusion problem in ${\mathbb{R}^N}$ involving $p(x)$-Laplacian and oscillatory terms”, Z. Angew. Math. Phys., 63:4 (2012), 691–711  crossref  mathscinet  zmath  isi
    158. Aouaoui S., “Existence of three solutions for some equation of Kirchhoff type involving variable exponents”, Appl. Math. Comput., 218:13 (2012), 7184–7192  crossref  mathscinet  zmath  isi
    159. Yucedag Z., Avci M., Mashiyev R., “On an elliptic system of $p(x)$-Kirchhoff-type under Neumann boundary condition”, Math. Model. Anal., 17:2 (2012), 161–170  crossref  mathscinet  zmath  isi
    160. Galewski M., “A note on the well-posed anisotropic discrete BVPs”, J. Difference Equ. Appl., 18:9 (2012), 1607–1610  crossref  mathscinet  zmath  isi
    161. Yin Honghui, Yang Zuodong, “Three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator”, Bound. Value Probl., 2012:30 (2012), 10 pp.  crossref  mathscinet  isi
    162. Bin Ge, QingMei Zhou, “Infinitely many positive solutions for a differential inclusion problem involving the $p(x)$-Laplacian”, Math. Nachr., 285:11-12 (2012), 1303–1315  crossref  mathscinet  zmath  isi
    163. Мурадов Т.Р., “О базисности возмущенной системы экспонент в пространстве Лебега с переменным показателем суммируемости”, Доклады Академии наук, 443:3 (2012), 290–290  mathscinet  zmath  elib; Muradov T.R., “On basicity of perturbed system of exponents in Lebesgue space with variable summability factor”, Dokl. Math., 85:2 (2012), 219–221  crossref  mathscinet  zmath  isi  elib
    164. Aouaoui S., “Nonvariational approach in the study of Kirchhoff-type equations without symmetry and involving variable exponent”, Math. Methods Appl. Sci., 35:11 (2012), 1269–1286  crossref  mathscinet  zmath  isi
    165. Sihua Liang, Shaoyun Shi, “Multiplicity of solutions for the noncooperative $p(x)$-Laplacian operator elliptic system involving the critical growth”, J. Dyn. Control Syst., 18:3 (2012), 379–396  crossref  mathscinet  zmath  isi
    166. Cammaroto F., Vilasi L., “Multiple solutions for a nonhomogeneous Dirichlet problem in Orlicz–Sobolev spaces”, Appl. Math. Comput., 218:23 (2012), 11518–11527  crossref  mathscinet  isi
    167. Qihu Zhang, “Existence of positive solutions to a class of $(p(x)$-Laplacian equations with singular nonlinearities”, Applied Mathematics Letters, 25:12 (2012), 2381–2384  crossref  mathscinet  zmath  isi
    168. Guiro A., Kone B., Ouaro S., “Weak homoclinic solutions of anisotropic difference equation with variable exponents”, Adv. Diff. Equ., 2012:1 (2012), 154  crossref  mathscinet  isi
    169. Galewski M., O'Regan D., “Impulsive boundary value problems for $p(t)$-Laplacian's via critical point theory”, Czechoslovak Math. J., 62(137):4 (2012), 951–967  crossref  mathscinet  zmath  isi
    170. Шарапудинов И.И., “Аппроксимативные свойства средних валле-пуссена на классах типа соболева с переменным показателем”, Вестн. Дагестанского научного центра РАН, 2012, № 45, 5–13  elib
    171. PH.G.. CIARLET, GEORGE DINCA, PAVEL MATEI, “FRÉCHET DIFFERENTIABILITY OF THE NORM IN A SOBOLEV SPACE WITH A VARIABLE EXPONENT”, Anal. Appl, 2012, 1350012  crossref
    172. Liu Yang, “Multiplicity of Solutions for Perturbed Nonhomogeneous Neumann Problem through Orlicz-Sobolev Spaces”, Abstract and Applied Analysis, 2012 (2012), 1  crossref
    173. Liang Sihua, Zhang Jihui, “Infinitely many small solutions for the $p(x)$-Laplacian operator with nonlinear boundary conditions”, Ann. Mat. Pura Appl. (4), 192:1 (2013), 1–16  crossref  mathscinet  zmath  isi
    174. Ge Bin, Zhou Qing Mei, “Three solutions for a differential inclusion problem involving the $p(x)$-Kirchhoff-type”, Applicable Analysis, 92:1 (2013), 60–71  crossref  mathscinet  zmath  isi
    175. Dai Guowei, “Three solutions for a nonlocal Dirichlet boundary value problem involving the $p(x)$-Laplacian”, Applicable Analysis, 92:1 (2013), 191–210  crossref  mathscinet  zmath  isi
    176. Şahiner Y., Zafer A., “Oscillation of nonlinear elliptic inequalities with $p(x)$-Laplacian”, Complex Variables and Elliptic Equations, 58:4 (2013), 537–546  crossref  mathscinet  zmath  isi
    177. Galewski M., Wieteska R., “On the system of anisotropic discrete BVPs”, Journal of Difference Equations and Applications, 19:7 (2013), 1065–1081  crossref  mathscinet  isi
    178. Afrouzi G.A., Shakeri S., Chung N.T., “A remark on the existence of positive solutions for variable exponent elliptic systems”, Arab J. Math. Sci., 19:1 (2013), 85–94  crossref  mathscinet  zmath
    179. Ghaemi M.B., Afrouzi G.A., Rasouli S.H., Choubin M., “On the existence of positive solutions for a class of $(p(x),q(x))$-Laplacian system”, Appl. Math. Lett., 26:3 (2013), 367–372  crossref  mathscinet  zmath  isi
    180. Costea N., Moroşanu G., “A Multiplicity Result for an Elliptic Anisotropic Differential Inclusion Involving Variable Exponents”, Set-Valued Var. Anal., 21:2 (2013), 311–332  crossref  mathscinet  isi
    181. Heikki Hakkarainen, Matti Nuortio, “The variable exponent BV-Sobolev capacity”, Rev. Mat. Complut., 2013  crossref  zmath
    182. Boureanu M.-M., Udrea D.N., “Existence and multiplicity results for elliptic problems with $p(\cdot)$-growth conditions”, Nonlinear Anal. Real World Appl., 14:4 (2013), 1829–1844  crossref  mathscinet  zmath  isi
    183. Cammaroto F., Vilasi L., “On a perturbed $p(x)$-Laplacian problem in bounded and unbounded domains”, J. Math. Anal. Appl., 402:1 (2013), 71–83  crossref  mathscinet  zmath  isi
    184. Yongqiang Fu, Mingqi Xiang, “The existence of weak solutions for parabolic variational inequalities with $(p(x,t), q(x,t))$-growth”, Applicable Analysis, 2013  crossref
    185. Bulíček M., Pustějovská P., “On Existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index”, J. Math. Anal. Appl., 402:1 (2013), 157–166  crossref  mathscinet  zmath  isi
    186. Zhang Liang, Tang X.H., “Periodic solutions for some nonautonomous $p(t)$-Laplacian Hamiltonian systems”, Appl. Math., 58:1 (2013), 39–61  crossref  mathscinet  zmath  isi
    187. Bin Ge, Qing-Mei Zhou, “Multiple solutions for a Robin-type differential inclusion problem involving the $p(x)$-Laplacian”, Math. Meth. Appl. Sci., 2013  crossref
    188. Eleuteri M. Harjulehto P. Lukkari T., “Global Regularity and Stability of Solutions to Obstacle Problems with Nonstandard Growth”, Rev. Mat. Complut., 26:1 (2013), 147–181  crossref  mathscinet  isi
    189. Sihua Liang, Jihui Zhang, “Multiple solutions for noncooperative $p(x)$-Laplacian equations in $\mathbb R^N$ involving the critical exponent”, J. Math. Anal. Appl., 403:2 (2013), 344–356  crossref  mathscinet  isi
    190. И. И. Шарапудинов, “Приближение функций в $L^{p(x)}_{2\pi}$ тригонометрическими полиномами”, Изв. РАН. Сер. матем., 77:2 (2013), 197–224  mathnet  crossref  mathscinet  zmath  adsnasa  elib; I. I. Sharapudinov, “Approximation of functions in $L^{p(x)}_{2\pi}$ by trigonometric polynomials”, Izv. Math., 77:2 (2013), 407–434  crossref  isi  elib
    191. С. Г. Самко, С. М. Умархаджиев, “О регуляризации одного многомерного интегрального уравнения в пространствах Лебега с переменным показателем”, Матем. заметки, 93:4 (2013), 575–585  mathnet  crossref  mathscinet  zmath  elib; S. G. Samko, S. M. Umarkhadzhiev, “On the Regularization of a Multidimensional Integral Equation in Lebesgue Spaces with Variable Exponent”, Math. Notes, 93:4 (2013), 583–592  crossref  isi  elib
    192. Marek Galewski, Donal O'Regan, “On Well Posed Impulsive Boundary Value Problems forp(t)-Laplacian's”, Mathematical Modelling and Analysis, 18:2 (2013), 161  crossref
    193. Guizhen Zhi, Yunrui Guo, Yan Wang, Qihu Zhang, “Existence of solutions and nonnegative solutions for a class of p(t)-Laplacian differential systems with multipoint and integral boundary value conditions”, Bound Value Probl, 2013:1 (2013), 106  crossref
    194. Rong Dong, Qihu Zhang, “Solutions and nonnegative solutions for a weighted variable exponent impulsive integro-differential system with multi-point and integral mixed boundary value problems”, Bound Value Probl, 2013:1 (2013), 161  crossref
    195. Ph.G.. Ciarlet, George Dinca, Pavel Matei, “Operator equations and duality mappings in Sobolev spaces with variable exponents”, Chin. Ann. Math. Ser. B, 34:5 (2013), 639  crossref
    196. Lingju Kong, “On a fourth order elliptic problem with a -biharmonic operator”, Applied Mathematics Letters, 2013  crossref
    197. Norio Yoshida, “Picone identity for quasilinear elliptic equations with -Laplacians and Sturmian comparison theory”, Applied Mathematics and Computation, 225 (2013), 79  crossref
    198. BIN GE, “Sign changing solutions of the p(x)-Laplacian equation”, Proc Math Sci, 2013  crossref
    199. G.M.olica Bisci, Dušan Repovš, “On sequences of solutions for discrete anisotropic equations”, Expositiones Mathematicae, 2013  crossref
    200. Liang Zhang, X. H. Tang, “Existence and multiplicity of periodic solutions for some second order differential systems with p(t)-Laplacian”, Math. Slovaca, 63:6 (2013), 1269  crossref
    201. G.A.. Afrouzi, Qihu Zhang, Armin Hadjian, “Multiple solutions for a class of Neumann doubly eigenvalue boundary value systems involving the
      $$(p_1(x),\ldots ,p_n(x))$$
      ( p 1 ( x ) , … , p n ( x ) ) -Laplacian”, RACSAM, 2013  crossref
    202. R. A. Bandaliev, “On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0<p(x)<1$”, Eurasian Math. J., 4:4 (2013), 5–16  mathnet
    203. Guoqing Zhang, Hongtao Zhang, “On a Class of Anisotropic Nonlinear Elliptic Equations with Variable Exponent”, Journal of Function Spaces and Applications, 2013 (2013), 1  crossref
    204. Zhou Qing-Mei, Ge Bin, “Three Solutions for Inequalities Dirichlet Problem Driven byp(x)-Laplacian-Like”, Abstract and Applied Analysis, 2013 (2013), 1  crossref
    205. Yongqiang Fu, Miaomiao Yang, “Existence of solutions for quasilinear elliptic systems in divergence form with variable growth”, J Inequal Appl, 2014:1 (2014), 23  crossref
    206. Sun-Sig Byun, Jihoon Ok, Lihe Wang, “W 1, p(·)-Regularity for Elliptic Equations with Measurable Coefficients in Nonsmooth Domains”, Commun. Math. Phys, 2014  crossref
    207. Zifei Shen, Chenyin Qian, “Infinitely many solutions for a Kirchhoff-type problem with non-standard growth and indefinite weight”, Z. Angew. Math. Phys, 2014  crossref
    208. Р. А. Бандалиев, “О структурных свойствах весового пространства $L_{p(x),\omega}$ для $0< p(x)< 1$”, Матем. заметки, 95:4 (2014), 492–506  mathnet  crossref  mathscinet  elib; R. A. Bandaliev, “On the Structural Properties of the Weight Space $L_{p(x),\omega}$ for $0< p(x)<1$”, Math. Notes, 95:4 (2014), 450–462  crossref  isi
    209. Chenxing Zhou, Sihua Liang, “INFINITELY MANY SMALL SOLUTIONS FOR THE p(x)-LAPLACIAN OPERATOR WITH CRITICAL GROWTH”, Journal of applied mathematics & informatics, 32:1_2 (2014), 137  crossref
    210. Patrizia Pucci, Qihu Zhang, “Existence of entire solutions for a class of variable exponent elliptic equations”, Journal of Differential Equations, 2014  crossref
    211. M. Massar, M. Talbi, N. Tsouli, “Multiple solutions for nonlocal system of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mtext>,</mml:mtext><mml:mi>”, Applied Mathematics and Computation, 242 (2014), 216  crossref
    212. Marek Galewski, Piotr Kowalski, “Three solutions to discrete anisotropic problems with two parameters”, centr.eur.j.math, 12:10 (2014), 1403  crossref
    213. Ali Taghavi, G.A.lizadeh Afrouzi, Horieh Ghorbani, “Existence of nontrivial solution for elliptic systems involving the <i>p</i>(<i>x</i>)-Laplacian”, Studia Scientiarum Mathematicarum Hungarica, 51:2 (2014), 213  crossref
    214. F. Cammaroto, L. Vilasi, “Existence of Three Solutions for a Degenerate Kirchhoff–Type Transmission Problem”, Numerical Functional Analysis and Optimization, 35:7-9 (2014), 911  crossref
    215. Shapour Heidarkhani, G.A.. Afrouzi, Armin Hadjian, “Multiplicity results for elliptic problems with variable exponent and nonhomogeneous Neumann conditions”, Math. Meth. Appl. Sci, 2014, n/a  crossref
    216. Mostafa Allaoui, “Existence results for a class of nonlocal problems involving p(x)-Laplacian”, Arab J Math, 2014  crossref
    217. Li Yin, Xiaopin Liu, Jingjing Liu, Qihu Zhang, “On the prescribed variable exponent mean curvature impulsive system boundary value problems”, Bound Value Probl, 2014:1 (2014)  crossref
    218. Bin Ge, Qing-Mei Zhou, Yu-Hu Wu, “Eigenvalues of the p(x)-biharmonic operator with indefinite weight”, Z. Angew. Math. Phys, 2014  crossref
    219. Dušan Repovš, “Stationary waves of Schrödinger-type equations with variable exponent”, Anal. Appl, 2014, 1  crossref
    220. Guizhen Zhi, Qihu Zhang, “Solutions for a Variable Exponent Neumann Boundary Value Problems with Hardy Critical Exponent”, Bull. Malays. Math. Sci. Soc, 2014  crossref
    221. Vicenţi.D.. Rădulescu, “Nonlinear elliptic equations with variable exponent: Old and new”, Nonlinear Analysis: Theory, Methods & Applications, 2014  crossref
    222. Qihu Zhang, Chunshan Zhao, “Existence of strong solutions of a <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-Laplacian Dirichlet problem without the Ambrosetti–Rabinowitz condition”, Computers & Mathematics with Applications, 2014  crossref
    223. Galewski M., Wieteska R., “Multiple periodic solutions to a discrete $p^{(k)}$ - Laplacian problem”, Discrete Contin. Dyn. Syst.-Ser. B, 19:8, SI (2014), 2535–2547  crossref  mathscinet  zmath  isi  scopus
    224. Saifia O., Velin J., “Existence and Nonexistence of Solutions To Nonlinear Gradient Elliptic Systems Involving (P(X),Q(X))-Laplacian Operators”, Electron. J. Differ. Equ., 2014, 163  mathscinet  zmath  isi  elib
    225. Wang L., Tao Sh., “Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent”, J. Inequal. Appl., 2014, 227  crossref  mathscinet  isi  scopus
    226. Zhang B., Fu Y., Radulescu V.D., “The Stationary Navier-Stokes Equations in Variable Exponent Spaces of Clifford-Valued Functions”, Adv. Appl. Clifford Algebr., 24:1 (2014), 231–252  crossref  mathscinet  zmath  isi  elib  scopus
    227. Bocea M., Mihailescu M., “On the continuity of the Luxemburg norm of the gradient in $L^{p(\cdot )}$ with respect to $p(\cdot )$”, Proc. Amer. Math. Soc., 142:2 (2014), 507–517  crossref  mathscinet  zmath  isi  elib
    228. Tao Sh., Wang L., “Littlewood-Paley Operators on Morrey Spaces with Variable Exponent”, Sci. World J., 2014, 790671  crossref  isi  scopus
    229. Wu X., “Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient”, Abstract Appl. Anal., 2014, 396704  crossref  mathscinet  isi  scopus
    230. M.B.adr Benboubker, Houssam Chrayteh, Mostafa El Moumni, Hassane Hjiaj, “Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data”, Acta. Math. Sin.-English Ser, 31:1 (2015), 151  crossref
    231. Mostafa Allaoui, Anass Ourraoui, “Existence Results for a Class of p(x)- Kirchhoff Problem with a Singular Weight”, Mediterr. J. Math, 2015  crossref
    232. Maria-Magdalena Boureanu, Cristian Udrea, “No–flux boundary value problems with anisotropic variable exponents”, CPAA, 14:3 (2015), 881  crossref
    233. Yongqiang Fu, Mingqi Xiang, “Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent”, Applicable Analysis, 2015, 1  crossref
    234. Mostafa Allaoui, “Existence of three solutions for variable exponent elliptic systems”, Ann Univ Ferrara, 2015  crossref
    235. G.A.. Afrouzi, Shapour Heidarkhani, Saeid Shokooh, “Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz-Sobolev spaces”, Complex Variables and Elliptic Equations, 2015, 1  crossref
    236. Mostafa Allaoui, A.R.achid El Amrouss, Anass Ourraoui, “Existence results for a class of nonlocal problems involvingp(x)-Laplacian”, Math. Meth. Appl. Sci, 2015, n/a  crossref
    237. Ziheng Zhang, Tian Xiang, Rong Yuan, “Homoclinic Solutions for p(t)-Laplacian–Hamiltonian Systems Without Coercive Conditions”, Mediterr. J. Math, 2015  crossref
    238. Thanasis Kostopoulos, Nikos Yannakakis, “Density of smooth functions in variable exponent Sobolev spaces”, Nonlinear Analysis: Theory, Methods & Applications, 127 (2015), 196  crossref
    239. Sun-Sig Byun, Jihoon Ok, “Optimal Gradient Estimates for Parabolic Equations in Variable Exponent Spaces”, Int Math Res Notices, 2015, rnv219  crossref
    240. Mingqi Xiang, “Young measure solutions for a fourth-order wave equation with variable growth”, Bound Value Probl, 2015:1 (2015)  crossref
    241. S. Heidarkhani, B. Ge, “Critical Points Approaches to Elliptic Problems Driven by a p(x)-Laplacian”, Ukr Math J, 2015  crossref
    242. P. Baroni, M. Colombo, G. Mingione, “Nonautonomous functionals, borderline cases and related function classes”, Алгебра и анализ, 27:3 (2015), 6–50  mathnet  mathscinet  elib; St. Petersburg Math. J., 27:3 (2016), 347–379  crossref  isi
    243. В. В. Жиков, М. Д. Сурначëв, “О плотности гладких функций в весовых соболевских пространствах с переменным показателем”, Алгебра и анализ, 27:3 (2015), 95–124  mathnet  mathscinet  elib; St. Petersburg Math. J., 27:3 (2016), 415–436  crossref  isi
    244. Byun S.-S., Lee M., Ok J., “
      $$W^{2,p(\cdot )}$$
      W 2 , p ( ) -regularity for elliptic equations in nondivergence form with BMO coefficients”, Math. Ann., 363:3-4 (2015), 1023–1052  crossref  mathscinet  zmath  isi  elib  scopus
    245. Gorka P., Macios A., “Almost everything you need to know about relatively compact sets in variable Lebesgue spaces”, J. Funct. Anal., 269:7 (2015), 1925–1949  crossref  mathscinet  zmath  isi  scopus
    246. Colombo M., Mingione G., “Bounded Minimisers of Double Phase Variational Integrals”, Arch. Ration. Mech. Anal., 218:1 (2015), 219–273  crossref  mathscinet  zmath  isi  elib  scopus
    247. Zou W., Wang W., Bi Ya., “On a class of nonlinear obstacle problems with nonstandard growth”, Math. Meth. Appl. Sci., 38:14 (2015), 2911–2921  crossref  mathscinet  zmath  isi
    248. Li Zh., Gao W., “Existence of renormalized solutions to a nonlinear parabolic equation in L ^{1} setting with nonstandard growth condition and gradient term”, Math. Meth. Appl. Sci., 38:14 (2015), 3043–3062  crossref  mathscinet  zmath  isi  scopus
    249. Cabanillas Lapa E., Pardo Rivera V., Quique Broncano J., “No-Flux Boundary Problems Involving P(X)-Laplacian-Like Operators”, Electron. J. Differ. Equ., 2015, 219  mathscinet  zmath  isi
    250. Yucedag Z., “Existence of Solutions for
      $$p(x)$$
      p ( x ) Laplacian Equations Without Ambrosetti–Rabinowitz Type Condition”, Bull. Malays. Math. Sci. Soc., 38:3 (2015), 1023–1033  crossref  mathscinet  zmath  isi  scopus
    251. Baroni P. Colombo M. Mingione G., “Harnack inequalities for double phase functionals”, Nonlinear Anal.-Theory Methods Appl., 121 (2015), 206–222  crossref  mathscinet  zmath  isi  scopus
    252. Zou W., Li J., “Existence and uniqueness of bounded weak solutions for some nonlinear parabolic problems”, Bound. Value Probl., 2015, 69  crossref  mathscinet  isi  elib  scopus
    253. Niu R., Zheng H., Zhang B., “Navier-Stokes equations with variable viscosity in variable exponent spaces of Clifford-valued functions”, Bound. Value Probl., 2015, 30  crossref  mathscinet  zmath  isi  scopus
    254. Colombo M., Mingione G., “Regularity for Double Phase Variational Problems”, Arch. Ration. Mech. Anal., 215:2 (2015), 443–496  crossref  mathscinet  zmath  isi  scopus
    255. Cupini G., Mascolo E., “Local Regularity For Elliptic Systems With P, Q-Growth”, Bruno Pini Math. Anal. Semin., 1 (2015), 15–38  isi
    256. Kong L., “Eigenvalues for a fourth order elliptic problem”, Proc. Amer. Math. Soc., 143:1 (2015), PII S0002-9939(2014)12213-1, 249–258  crossref  mathscinet  zmath  isi
    257. Alkhutov Yu.A. Surnachev M.D., “On a Harnack inequality for the elliptic (p, q)-Laplacian”, Dokl. Math., 94:2 (2016), 569–573  crossref  zmath  isi  elib  scopus
    258. Gaczkowski M., Gorka P., Pons D.J., “Sobolev spaces with variable exponents on complete manifolds”, J. Funct. Anal., 270:4 (2016), 1379–1415  crossref  mathscinet  zmath  isi  scopus
    259. Colombo M., Mingione G., “Calderón–Zygmund estimates and non-uniformly elliptic operators”, J. Funct. Anal., 270:4 (2016), 1416–1478  crossref  mathscinet  zmath  isi  elib  scopus
    260. Paatashvili V., “Smirnov classes of analytic functions with variable exponent in multiply connected domains”, Complex Var. Elliptic Equ., 61:1 (2016), 29–41  crossref  mathscinet  zmath  isi  scopus
    261. Eleuteri M., Marcellini P., Mascolo E., “Lipschitz continuity for energy integrals with variable exponents”, Rend. Lincei-Mat. Appl., 27:1 (2016), 61–87  crossref  mathscinet  zmath  isi  scopus
    262. Kokilashvili V. Meskhi A. Rafeiro H. Samko S., “Integral Operators in Non-Standard Function Spaces, Vol 1: Variable Exponent Lebesgue and Amalgam Spaces”, Integral Operators in Non-Standard Function Spaces, Vol 1: Variable Exponent Lebesgue and Amalgam Spaces, Operator Theory Advances and Applications, 248, Springer Int Publishing Ag, 2016, 1–567  crossref  isi
    263. Alkhutov Yu.A. Surnachev M.D., “On the Regularity of a Boundary Point For the P(X)-Laplacian”, Dokl. Math., 97:1 (2018), 65–68  crossref  isi
    264. Akgun R. Ghorbanalizadeh A., “Approximation By Integral Functions of Finite Degree in Variable Exponent Lebesgue Spaces on the Real Axis”, Turk. J. Math., 42:4 (2018), 1887–1903  crossref  isi
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Просмотров:
    Эта страница:1374
    Полный текст:331
    Литература:87
    Первая стр.:2

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018