Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1986, Volume 50, Issue 4, Pages 866–873 (Mi izv1539)  

This article is cited in 7 scientific papers (total in 7 papers)

The hartogs phenomenon for holomorphically convex Kähler manifolds

S. M. Ivashkovich


Abstract: It is said that the Hartogs phenomenon occurs for a complex manifold $Y$ if every holomorphic mapping $f$ of a domain $D$ over $\mathbf C^n$ into $Y$ extends to a holomorphic mapping $\widetilde f$ of the envelope of holomorphy $\widetilde D$ into $Y$. In this paper it is proved that a holomorphically convex Kähler manifold $Y$ exhibits the Hartogs phenomenon if and only if $Y$ contains no rational curves.
Bibliography: 10 titles.

Full text: PDF file (998 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1987, 29:1, 225–232

Bibliographic databases:

UDC: 517.5
MSC: 32D10
Received: 27.01.1986

Citation: S. M. Ivashkovich, “The hartogs phenomenon for holomorphically convex Kähler manifolds”, Izv. Akad. Nauk SSSR Ser. Mat., 50:4 (1986), 866–873; Math. USSR-Izv., 29:1 (1987), 225–232

Citation in format AMSBIB
\Bibitem{Iva86}
\by S.~M.~Ivashkovich
\paper The hartogs phenomenon for holomorphically convex K\"ahler manifolds
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1986
\vol 50
\issue 4
\pages 866--873
\mathnet{http://mi.mathnet.ru/izv1539}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=864181}
\zmath{https://zbmath.org/?q=an:0618.32011}
\transl
\jour Math. USSR-Izv.
\yr 1987
\vol 29
\issue 1
\pages 225--232
\crossref{https://doi.org/10.1070/IM1987v029n01ABEH000968}


Linking options:
  • http://mi.mathnet.ru/eng/izv1539
  • http://mi.mathnet.ru/eng/izv/v50/i4/p866

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. M. Ivashkovitch, “Spherical shells as obstructions for the extension of holomorphic mappings”, J Geom Anal, 2:4 (1992), 351  crossref  elib
    2. O ALEHYANE, “Une extension du théorème de Hartogs pour les applications séparément holomorphes”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 324:2 (1997), 149  crossref
    3. DO DUC THAI, NGUYEN THI TUYET MAI, “HARTOGS-TYPE EXTENSION THEOREMS FOR SEPARATELY HOLOMORPHIC MAPPINGS ON COMPACT SETS”, Int. J. Math, 11:05 (2000), 723  crossref
    4. Viêt-Anh Nguyên, Peter Pflug, “Cross Theorems with Singularities”, J Geom Anal, 2009  crossref  isi
    5. Benjamin McKay, “Extension Phenomena for Holomorphic Geometric Structures”, SIGMA, 5 (2009), 058, 45 pp.  mathnet  crossref  mathscinet
    6. Viet-Anh Nguyen, “Recent Developments in the Theory of Separately Holomorphic Mappings”, Colloquium Mathematicum, 117:2 (2009), 175–206  crossref  isi
    7. F. Neji, “Equicontinuous families of meromorphic mappings with values in compact complex surfaces”, Complex Variables and Elliptic Equations, 2011, 1  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:185
    Full text:64
    References:41
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021