RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1986, Volume 50, Issue 5, Pages 1077–1096 (Mi izv1564)  

This article is cited in 4 scientific papers (total in 4 papers)

The action of a group on a graph

V. I. Trofimov


Abstract: A classification of automorphisms of a connected graph $\Gamma$ is given. In particular, an automorphism $g$ is called an $o$-automorphism if for some (and then also for any) vertex $x$ of the graph $\Gamma$
$$ \max\{d_\Gamma(y,g(y))\mid y\in V(\Gamma), d_\Gamma(x,y)\leqslant n\}=o(n). $$

It is proved that a connected locally finite graph admits a vertex-transitive group of $o$-automorphisms if and only if the graph is a nilpotent lattice.
Bibliography: 9 titles.

Full text: PDF file (2609 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1987, 29:2, 429–447

Bibliographic databases:

UDC: 512.544.42+519.17
MSC: Primary 05C25, 20B27; Secondary 05C30
Received: 31.01.1984

Citation: V. I. Trofimov, “The action of a group on a graph”, Izv. Akad. Nauk SSSR Ser. Mat., 50:5 (1986), 1077–1096; Math. USSR-Izv., 29:2 (1987), 429–447

Citation in format AMSBIB
\Bibitem{Tro86}
\by V.~I.~Trofimov
\paper The action of a~group on a~graph
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1986
\vol 50
\issue 5
\pages 1077--1096
\mathnet{http://mi.mathnet.ru/izv1564}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=873661}
\zmath{https://zbmath.org/?q=an:0676.05044|0616.05040}
\transl
\jour Math. USSR-Izv.
\yr 1987
\vol 29
\issue 2
\pages 429--447
\crossref{https://doi.org/10.1070/IM1987v029n02ABEH000977}


Linking options:
  • http://mi.mathnet.ru/eng/izv1564
  • http://mi.mathnet.ru/eng/izv/v50/i5/p1077

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Trofimov, “Asymptotic behavior of automorphisms of graphs”, Math. USSR-Sb., 62:1 (1989), 277–287  mathnet  crossref  mathscinet  zmath
    2. R MOLLER, “Topological groups, automorphisms of infinite graphs and a theorem of Trofimov”, Discrete Mathematics, 178:1-3 (1998), 271  crossref  elib
    3. Vladimir I. Trofimov, “Kernels of van den Dries–Wilkie Homomorphisms and o-Automorphisms of Graphs”, Journal of Algebra, 226:2 (2000), 967  crossref
    4. V.I. Trofimov, “On the action of a group on a graph, II”, Discrete Mathematics, 2010  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:297
    Full text:131
    References:42
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019