|
This article is cited in 1 scientific paper (total in 1 paper)
Envelopes of holomorphy of some tube sets in $\mathbf C^2$ and the monodromy theorem
S. M. Ivashkovich
Abstract:
The author proves that functions holomorphic in a neighborhood of the set $D+i\partial E$, where $D$ and $E$ are domains in $\mathbf R^2$, extend holomorphically to a neighborhood of the set $D_1+iE$, where $D_1$ is a subdomain of $D$. As a corollary he shows that functions analytic along $D+i\gamma$, where $\gamma$ is a curve in $\mathbf R^2$, are single-valued in a neighborhood of $D+i\gamma$ under certain restrictions to the size of $D$ and $\gamma$.
Bibliography: 4 titles.
Full text:
PDF file (990 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1982, 19:1, 189–196
Bibliographic databases:
UDC:
517.5
MSC: 32D10, 32A07 Received: 22.02.1980 Revised: 19.02.1981
Citation:
S. M. Ivashkovich, “Envelopes of holomorphy of some tube sets in $\mathbf C^2$ and the monodromy theorem”, Izv. Akad. Nauk SSSR Ser. Mat., 45:4 (1981), 896–904; Math. USSR-Izv., 19:1 (1982), 189–196
Citation in format AMSBIB
\Bibitem{Iva81}
\by S.~M.~Ivashkovich
\paper Envelopes of holomorphy of some tube sets in $\mathbf C^2$ and the monodromy theorem
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1981
\vol 45
\issue 4
\pages 896--904
\mathnet{http://mi.mathnet.ru/izv1590}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=631443}
\zmath{https://zbmath.org/?q=an:0513.32020|0487.32010}
\transl
\jour Math. USSR-Izv.
\yr 1982
\vol 19
\issue 1
\pages 189--196
\crossref{https://doi.org/10.1070/IM1982v019n01ABEH001407}
Linking options:
http://mi.mathnet.ru/eng/izv1590 http://mi.mathnet.ru/eng/izv/v45/i4/p896
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Proc. Steklov Inst. Math., 279 (2012), 257–275
|
Number of views: |
This page: | 156 | Full text: | 64 | References: | 30 | First page: | 1 |
|