|
A four-dimensional bundle of quadrics, and a monad
A. S. Tikhomirov
Abstract:
In this paper the author constructs a regular mapping $f$ of the variety of moduli of stable two-dimensional vector bundles $\mathscr F$ on $P^3$ with Chern classes $c_1(\mathscr F)=0$ and $c_2(\mathscr F)=n$ which satisfy $h^1(P^3,\mathscr F(-2))=0$, into the variety of classes of four-dimensional bundles of quadrics (whose base is the Grassmannian $G(1,3)$) in $P^{n-1}$. He proves that $f$ is an embedding. For the proof he constructs a monad on $P^3$ for the class of $f(\mathscr F)$, such that the cohomology sheaf of the monad is isomorphic to the vector bundle $\mathscr F$.
Bibliography: 4 titles.
Full text:
PDF file (997 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1981, 16:1, 207–220
Bibliographic databases:
UDC:
513.6
MSC: Primary 14D20; Secondary 14M99 Received: 28.12.1978
Citation:
A. S. Tikhomirov, “A four-dimensional bundle of quadrics, and a monad”, Izv. Akad. Nauk SSSR Ser. Mat., 44:1 (1980), 219–232; Math. USSR-Izv., 16:1 (1981), 207–220
Citation in format AMSBIB
\Bibitem{Tik80}
\by A.~S.~Tikhomirov
\paper A four-dimensional bundle of quadrics, and a~monad
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1980
\vol 44
\issue 1
\pages 219--232
\mathnet{http://mi.mathnet.ru/izv1644}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=563793}
\zmath{https://zbmath.org/?q=an:0465.14003|0432.14009}
\transl
\jour Math. USSR-Izv.
\yr 1981
\vol 16
\issue 1
\pages 207--220
\crossref{https://doi.org/10.1070/IM1981v016n01ABEH001291}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1981LP24600011}
Linking options:
http://mi.mathnet.ru/eng/izv1644 http://mi.mathnet.ru/eng/izv/v44/i1/p219
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 200 | Full text: | 81 | References: | 18 | First page: | 1 |
|