|
This article is cited in 45 scientific papers (total in 45 papers)
Cohomology of Severi–Brauer varieties and the norm residue homomorphism
A. S. Merkur'ev, A. A. Suslin
Abstract:
The basic purpose of this paper is to prove bijectivity of the norm residue homomorphism $R_{F,n}\colon K_2(F)/nK_2(F)\to H^2(F,\mu_n^{\otimes 2})$ for any field $F$ of characteristic prime to $n$. In particular, if $\mu_n\subset F$, then any central simple algebra of exponent $n$ is similar to a tensor product of cyclic algebras. In the course of the proof we obtain partial degeneracy of the Gersten spectral sequence, and we compute some $K$-cohomology groups of Severi–Brauer groups corresponding to cyclic algebras of prime degree. The fundamental theorem also gives us several corollaries.
Bibliography: 27 titles.
Full text:
PDF file (3464 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1983, 21:2, 307–340
Bibliographic databases:
UDC:
523.015.7
MSC: Primary 12A62, 14F15, 16A54, 16A61, 16A39; Secondary 13F25, 13A20 Received: 05.04.1982
Citation:
A. S. Merkur'ev, A. A. Suslin, “Cohomology of Severi–Brauer varieties and the norm residue homomorphism”, Izv. Akad. Nauk SSSR Ser. Mat., 46:5 (1982), 1011–1046; Math. USSR-Izv., 21:2 (1983), 307–340
Citation in format AMSBIB
\Bibitem{MerSus82}
\by A.~S.~Merkur'ev, A.~A.~Suslin
\paper Cohomology of Severi--Brauer varieties and the norm residue homomorphism
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1982
\vol 46
\issue 5
\pages 1011--1046
\mathnet{http://mi.mathnet.ru/izv1657}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=675529}
\zmath{https://zbmath.org/?q=an:0525.18008}
\transl
\jour Math. USSR-Izv.
\yr 1983
\vol 21
\issue 2
\pages 307--340
\crossref{https://doi.org/10.1070/IM1983v021n02ABEH001793}
Linking options:
http://mi.mathnet.ru/eng/izv1657 http://mi.mathnet.ru/eng/izv/v46/i5/p1011
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
I. Ya. Sivitskii, “On torsion in Milnor's $k$-groups for a local field”, Math. USSR-Sb., 54:2 (1986), 561–569
-
A. S. Merkur'ev, “On the structure of the Brauer group of fields”, Math. USSR-Izv., 27:1 (1986), 141–157
-
Tilmann Würfel, “Extensions of pro- p groups of cohomological dimension two”, Math Proc Camb Phil Soc, 99:2 (1986), 209
-
Spencer Bloch, Kazuya Kato, “
p-Adic etale cohomology”, Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 63:1 (1986), 107
-
Yu. I. Manin, M. A. Tsfasman, “Rational varieties: algebra, geometry and arithmetic”, Russian Math. Surveys, 41:2 (1986), 51–116
-
R. A. Bogomolov, “Two theorems on divisibility and torsion in Milnor's $K$-groups”, Math. USSR-Sb., 58:2 (1987), 407–416
-
A. S. Merkur'ev, “On torsion in the Milnor $K$-groups of fields”, Math. USSR-Sb., 59:1 (1988), 95–112
-
Kazuya Kato, Takako Kuzumaki, “The dimension of fields and algebraic K-theory”, Journal of Number Theory, 24:2 (1986), 229
-
Burton Fein, Murray Schacher, “Brauer groups of algebraic function fields”, Journal of Algebra, 103:2 (1986), 454
-
J.-P Tignol, “Algèbres indécomposables d'exposant premier”, Advances in Mathematics, 65:3 (1987), 205
-
A. S. Merkur'ev, “The group $SK_2$ for quaternion algebras”, Math. USSR-Izv., 32:2 (1989), 313–337
-
Peter Doyle, Curt McMullen, “Solving the quintic by iteration”, Acta Math, 163:1 (1989), 151
-
Timothy J Ford, “On the Brauer group of”, Journal of Algebra, 122:2 (1989), 410
-
M. Somekawa, “On Milnor K-groups attached to semi-Abelian varieties”, K-Theory, 4:2 (1990), 105
-
A. S. Merkur'ev, A. A. Suslin, “The group $K_3$ for a field”, Math. USSR-Izv., 36:3 (1991), 541–565
-
A. S. Merkur'ev, A. A. Suslin, “The norm residue homomorphism of degree three”, Math. USSR-Izv., 36:2 (1991), 349–367
-
Ya. Nekovar, “Maslov index and Clifford algebras”, Funct. Anal. Appl., 24:3 (1990), 196–204
-
Jun Morita, Ulf Rehmann, “SymplecticK
2 of Laurent polynomials, associated Kac-Moody groups and Witt rings”, Math Z, 206:1 (1991), 57
-
F. A. Bogomolov, “Abelian subgroups of Galois groups”, Math. USSR-Izv., 38:1 (1992), 27–67
-
Marc Levine, “Relative MilnorK-theory”, K-Theory, 6:2 (1992), 113
-
V. I. Chernousov, “Remark on the Serre $(\mathrm{mod} 5)$-invariant for groups of type $E_8$”, Math. Notes, 56:1 (1994), 730–733
-
A. S. Merkurjev, “R-equivalence and rationality problem for semisimple adjoint classical algebraic groups”, Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 84:1 (1996), 189
-
Holger P. Petersson, Michel L. Racine, “An elementary approach to the Serre-Rost invariant of Albert algebras”, Indagationes Mathematicae, 7:3 (1996), 343
-
Vladimir Voevodsky, “Motivic cohomology with Z/2-coefficients”, Publ. Math, 98:1 (2003), 59
-
Kanetomo Sato, “Non-divisible cycles on surfaces over local fields”, Journal of Number Theory, 114:2 (2005), 272
-
Qunsheng Zhu, “Elements of prime power order in”, Journal of Number Theory, 113:2 (2005), 201
-
Leonid Positselski, “Galois Cohomology of Certain Field Extensions and the Divisible Case of Milnor–Kato Conjecture”, K-Theory, 36:1-2 (2005), 33
-
Masanori Asakura, “Surjectivity of p-adic regulators on K2 of Tate curves”, Invent math, 165:2 (2006), 267
-
R. Hazrat, “Reduced K-theory of Azumaya algebras”, Journal of Algebra, 305:2 (2006), 687
-
Dave Benson, Nicole Lemire, Ján Mináč, John Swallow, “Detecting pro-p-groups that are not absolute Galois groups”, crll, 2007:613 (2007), 175
-
Kanetomo Sato, “
ℓ-Adic class field theory for regular local rings”, Math Ann, 2008
-
Kejian Xu, Yongliang Wang, “On the elements of prime power order in”, Journal of Number Theory, 128:3 (2008), 468
-
Michael Spiess, Takao Yamazaki, “A counterexample to generalizations of the Milnor-Bloch-Kato conjecture”, J K-Theory, 2009, 1
-
TAKAO YAMAZAKI, “MILNOR K-GROUP ATTACHED TO A TORUS AND BIRCH–TATE CONJECTURE”, Int. J. Math, 20:07 (2009), 841
-
Leonid Positselski, “Mixed Artin–Tate motives with finite coefficients”, Mosc. Math. J., 11:2 (2011), 317–402
-
Philippe Gille, Anne Quéguiner-Mathieu, “Formules pour l’invariant de Rost”, ANT, 5:1 (2011), 1
-
Skip Garibaldi, Holger P. Petersson, “Wild Pfister forms over Henselian fields, K-theory, and conic division algebras”, Journal of Algebra, 327:1 (2011), 386
-
Sergey Gorchinskiy, Dmitri Orlov, “Geometric Phantom Categories”, Publ.math.IHES, 117:1 (2013), 329
-
Eric Brussel, Eduardo Tengan, “Tame division algebras of prime pediod over function fields of p-adic curves”, Isr. J. Math, 2014
-
Leonid Positselski, “Galois cohomology of a number field is Koszul”, Journal of Number Theory, 2014
-
Ján Mináč, Nguyẽn.D.uy Tân, “The kernel unipotent conjecture and the vanishing of Massey products for odd rigid fields”, Advances in Mathematics, 273 (2015), 242
-
Luca Barbieri-Viale, “On the Deligne–Beilinson cohomology sheaves”, AKT, 1:1 (2016), 3
-
Gorchinskiy S., “Integral Chow Motives of Threefolds With K-Motives of Unit Type”, Bull. Korean. Math. Soc., 54:5 (2017), 1827–1849
-
A. Avilov, “Forms of the Segre Cubic”, Math. Notes, 107:1 (2020), 3–9
-
K. Banerjee, V. Guletskiǐ, “Étale monodromy and rational equivalence for $1$-cycles on cubic hypersurfaces in $\mathbb P^5$”, Sb. Math., 211:2 (2020), 161–200
|
Number of views: |
This page: | 1153 | Full text: | 411 | References: | 48 | First page: | 3 |
|