RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1979, Volume 43, Issue 2, Pages 277–293 (Mi izv1683)  

This article is cited in 4 scientific papers (total in 4 papers)

An integral estimate for the derivative of a rational function

V. I. Danchenko


Abstract: Let there be given numbers $\alpha,q,\lambda,p$ and $n$, $0<\alpha<\infty$, $1\leqslant q\leqslant\infty$, $0<\lambda\leqslant\infty$, $1<p\leqslant\infty$, $n=1,2,…$, and let $R(n,p)$ be the class of rational functions $\rho(z)$ of degree $\leqslant n$, analytic for $|z|\leqslant1$, with
\begin{gather*} \|\rho\|_p=( \int_{|\zeta|=1}|\rho(\zeta)|^p |d\zeta|)^{1/p}\leqslant1
(\|\rho\|_\infty=\sup\{|\rho(z)|:|z|=1\}). \end{gather*}
It is proved that, if $\alpha\geqslant1+p^{-1}-q^{-1}$, then
$$ \sup\{[ \int_0^1(1-r)^{\alpha\lambda-1}( \int_0^{2\pi}|\rho(r\cdot e^{i\varphi}|^q d\varphi)^{\lambda/q} dr]^{1/\lambda}:\rho\in R(n,p)\}<\infty. $$

Bibliography: 6 titles.

Full text: PDF file (1271 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1980, 14:2, 257–273

Bibliographic databases:

UDC: 517.5
MSC: 30E10, 41A20
Received: 13.03.1978

Citation: V. I. Danchenko, “An integral estimate for the derivative of a rational function”, Izv. Akad. Nauk SSSR Ser. Mat., 43:2 (1979), 277–293; Math. USSR-Izv., 14:2 (1980), 257–273

Citation in format AMSBIB
\Bibitem{Dan79}
\by V.~I.~Danchenko
\paper An~integral estimate for the derivative of a~rational function
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1979
\vol 43
\issue 2
\pages 277--293
\mathnet{http://mi.mathnet.ru/izv1683}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=534594}
\zmath{https://zbmath.org/?q=an:0443.30050|0413.30030}
\transl
\jour Math. USSR-Izv.
\yr 1980
\vol 14
\issue 2
\pages 257--273
\crossref{https://doi.org/10.1070/IM1980v014n02ABEH001097}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1980KM96800003}


Linking options:
  • http://mi.mathnet.ru/eng/izv1683
  • http://mi.mathnet.ru/eng/izv/v43/i2/p277

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Pekarskii, “Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation”, Math. USSR-Sb., 52:2 (1985), 557–574  mathnet  crossref  mathscinet  zmath
    2. V. I. Danchenko, “Several integral estimates of the derivatives of rational functions on sets of finite density”, Sb. Math., 187:10 (1996), 1443–1463  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. J. Math. Sci. (N. Y.), 182:5 (2012), 639–645  mathnet  crossref
    4. Baranov A. Zarouf R., “A Bernstein-Type Inequality for Rational Functions in Weighted Bergman Spaces”, Bull. Sci. Math., 137:4 (2013), 541–556  crossref  isi
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:238
    Full text:66
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021