RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1981, Volume 45, Issue 6, Pages 1332–1390 (Mi izv1716)  

This article is cited in 2 scientific papers (total in 2 papers)

A method for constructing a canonical matrix of solutions of a Hilbert problem arising in the solution of convolution equations on a finite interval

B. V. Pal'tsev


Abstract: The Hilbert boundary value problem corresponding to a convolution equation on a finite interval, with kernel belonging to a class singled out earlier by the author, is reduced to a system of integral equations. The solvability of this system in appropriate weighted spaces is studied and an algorithm for constructing a canonical matrix of solutions of the Hilbert problem from certain solutions of the system. Estimates of partial indices are given.
Bibliography: 15 titles.

Full text: PDF file (5207 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1982, 19:3, 559–610

Bibliographic databases:

UDC: 517.968.72+53
MSC: Primary 30E25, 45B05, 45E10; Secondary 35Q15, 45E05, 45F05, 44A15, 46E30, 47A53
Received: 29.05.1981

Citation: B. V. Pal'tsev, “A method for constructing a canonical matrix of solutions of a Hilbert problem arising in the solution of convolution equations on a finite interval”, Izv. Akad. Nauk SSSR Ser. Mat., 45:6 (1981), 1332–1390; Math. USSR-Izv., 19:3 (1982), 559–610

Citation in format AMSBIB
\Bibitem{Pal81}
\by B.~V.~Pal'tsev
\paper A~method for constructing a~canonical matrix of solutions of a~Hilbert problem arising in the solution of convolution equations on~a~finite interval
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1981
\vol 45
\issue 6
\pages 1332--1390
\mathnet{http://mi.mathnet.ru/izv1716}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=641804}
\zmath{https://zbmath.org/?q=an:0501.45004|0491.45006}
\transl
\jour Math. USSR-Izv.
\yr 1982
\vol 19
\issue 3
\pages 559--610
\crossref{https://doi.org/10.1070/IM1982v019n03ABEH001428}


Linking options:
  • http://mi.mathnet.ru/eng/izv1716
  • http://mi.mathnet.ru/eng/izv/v45/i6/p1332

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Erratum

    This publication is cited in the following articles:
    1. B. V. Pal'tsev, “Asymptotic behaviour of the spectra of integral convolution operators on a finite interval with homogeneous polar kernels”, Izv. Math., 67:4 (2003), 695–779  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. M. K. Kerimov, “Boris Vasil'evich Pal'tsev (on the occasion of his seventieth birthday)”, Comput. Math. Math. Phys., 50:7 (2010), 1113–1119  mathnet  crossref  mathscinet  adsnasa  isi  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:338
    Full text:78
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020