|
This article is cited in 3 scientific papers (total in 3 papers)
On real homotopy properties of complete intersections
I. K. Babenko
Abstract:
The real homotopy type of complete intersections in $\mathbf CP^N$ is studied. It is proved that these manifolds are intrinsically formal in the sense of Stashev and Gal'perin. The Poincaré series of the loop space on complete intersections is computed, and thus the validity of the Serre conjecture on the rationality for such complexes is established. As a corollary, a formula for the rational homotopy groups of a complete intersection is obtained.
Bibliography: 12 titles.
Full text:
PDF file (2196 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1980, 15:2, 241–258
Bibliographic databases:
UDC:
513.6
MSC: Primary 55P15, 55P35, 14F25; Secondary 14E30, 13N05, 55T05, 55T10 Received: 03.05.1979
Citation:
I. K. Babenko, “On real homotopy properties of complete intersections”, Izv. Akad. Nauk SSSR Ser. Mat., 43:5 (1979), 1004–1024; Math. USSR-Izv., 15:2 (1980), 241–258
Citation in format AMSBIB
\Bibitem{Bab79}
\by I.~K.~Babenko
\paper On real homotopy properties of complete intersections
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1979
\vol 43
\issue 5
\pages 1004--1024
\mathnet{http://mi.mathnet.ru/izv1745}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=552549}
\zmath{https://zbmath.org/?q=an:0443.14012|0423.14011}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1980IzMat..15..241B}
\transl
\jour Math. USSR-Izv.
\yr 1980
\vol 15
\issue 2
\pages 241--258
\crossref{https://doi.org/10.1070/IM1980v015n02ABEH001222}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1980LD11600002}
Linking options:
http://mi.mathnet.ru/eng/izv1745 http://mi.mathnet.ru/eng/izv/v43/i5/p1004
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
I. K. Babenko, “Problems of growth and rationality in algebra and topology”, Russian Math. Surveys, 41:2 (1986), 117–175
-
R. L. Krasauskas, Yu. P. Solov'ev, “Rational Hermitian $K$-theory and dihedral homology”, Math. USSR-Izv., 33:2 (1989), 261–293
-
I. K. Babenko, “Topological entropy of geodesic flows on simply connected manifolds, and related topics”, Izv. Math., 61:3 (1997), 517–535
|
Number of views: |
This page: | 259 | Full text: | 80 | References: | 51 | First page: | 3 |
|