RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1978, Volume 42, Issue 3, Pages 550–579 (Mi izv1779)  

This article is cited in 3 scientific papers (total in 3 papers)

On the nonemptiness of classes in axiomatic set theory

V. G. Kanovei


Abstract: Theorems are proved on the consistency with $ZF$, for $n\geqslant2$, of each of the following three propositions: (1) there exists an $L$-minimal (in particular, nonconstructive) $a\subseteq\omega$ such that $V=L[a]$ and $\{a\}\in\Pi_n^1$, but every $b\subseteq\omega$ of class $\Sigma_n^1$ with constructive code is itself constructive; (2) there exist $a,b\subseteq\omega$ such that their $L$-degrees differ by a formula from $\Pi_n^1$, but not by formulas from $\Sigma_n^1$ with constants from $L$ ($X$ and $Y$ are said to differ by a formula $\sim[(\exists x\in X)\varphi(x)\equiv(\exists y\in Y)\varphi(y)])$; (3) there exists an infinite, but Dedekind finite, set $X\in\mathscr P(\omega)$ of class $\Pi_n^1$, whereas there are no such sets of class $\underline\Sigma_n^1$. The proof uses Cohen's forcing method.
Bibliography: 17 titles.

Full text: PDF file (3409 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1978, 12:3, 507–535

Bibliographic databases:

UDC: 51.01.16
MSC: Primary 03E30; Secondary 03E35
Received: 06.10.1975
Revised: 22.02.1977

Citation: V. G. Kanovei, “On the nonemptiness of classes in axiomatic set theory”, Izv. Akad. Nauk SSSR Ser. Mat., 42:3 (1978), 550–579; Math. USSR-Izv., 12:3 (1978), 507–535

Citation in format AMSBIB
\Bibitem{Kan78}
\by V.~G.~Kanovei
\paper On the nonemptiness of classes in axiomatic set theory
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1978
\vol 42
\issue 3
\pages 550--579
\mathnet{http://mi.mathnet.ru/izv1779}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=503431}
\zmath{https://zbmath.org/?q=an:0427.03044|0409.03031}
\transl
\jour Math. USSR-Izv.
\yr 1978
\vol 12
\issue 3
\pages 507--535
\crossref{https://doi.org/10.1070/IM1978v012n03ABEH001997}


Linking options:
  • http://mi.mathnet.ru/eng/izv1779
  • http://mi.mathnet.ru/eng/izv/v42/i3/p550

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. G. Kanovei, “The set of all analytically definable sets of natural numbers can be defined analytically”, Math. USSR-Izv., 15:3 (1980), 469–500  mathnet  crossref  mathscinet  zmath  isi
    2. B. L. Budinas, “On the selector principle and analytic definability of constructive sets”, Russian Math. Surveys, 37:2 (1982), 207–208  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. Kanovei V. Lyubetsky V., “Definable Minimal Collapse Functions At Arbitrary Projective Levels”, J. Symb. Log., 84:1 (2019), 266–289  crossref  mathscinet  zmath  isi  scopus
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:185
    Full text:64
    References:27
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019