|
This article is cited in 8 scientific papers (total in 8 papers)
Monotone equivalence in ergodic theory
A. B. Katok
Abstract:
A class of monotonely equivalent automorphisms (standard automorphisms), which includes all ergodic automorphisms with discrete spectrum and most of the well-known examples of automorphisms with zero entropy, is studied. The basic results are two necessary and sufficient conditions for standardness: the first in terms of periodic approximation and the second in terms of the asymptotic properties of “words” arising from a coding of most trajectories by a finite partition. Also certain monotone invariants are defined and their properties discussed.
Bibliography: 36 titles.
Full text:
PDF file (5118 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1977, 11:1, 99–146
Bibliographic databases:
UDC:
517.9+513.88
MSC: 28A65 Received: 02.03.1976
Citation:
A. B. Katok, “Monotone equivalence in ergodic theory”, Izv. Akad. Nauk SSSR Ser. Mat., 41:1 (1977), 104–157; Math. USSR-Izv., 11:1 (1977), 99–146
Citation in format AMSBIB
\Bibitem{Kat77}
\by A.~B.~Katok
\paper Monotone equivalence in ergodic theory
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1977
\vol 41
\issue 1
\pages 104--157
\mathnet{http://mi.mathnet.ru/izv1794}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=442195}
\zmath{https://zbmath.org/?q=an:0372.28020|0379.28008}
\transl
\jour Math. USSR-Izv.
\yr 1977
\vol 11
\issue 1
\pages 99--146
\crossref{https://doi.org/10.1070/IM1977v011n01ABEH001696}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1977FB84400004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0010850931}
Linking options:
http://mi.mathnet.ru/eng/izv1794 http://mi.mathnet.ru/eng/izv/v41/i1/p104
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
E. A. Sataev, “An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a Bernoulli shift”, Math. USSR-Izv., 11:1 (1977), 147–169
-
Marlies Gerber, “A zero-entropy mixing transformation whose product with itself is loosely Bernoulli”, Isr J Math, 38:1-2 (1981), 1
-
A. M. Vershik, “Dynamic theory of growth in groups: Entropy, boundaries, examples”, Russian Math. Surveys, 55:4 (2000), 667–733
-
B. R. Fayad, A. B. Katok, A. Windsor, “Mixed spectrum reparameterizations of linear flows on $\mathbb T^2$”, Mosc. Math. J., 1:4 (2001), 521–537
-
Fraczek K., Kulaga-Przymus J., Lemanczyk M., “Non-reversibility and self-joinings of higher orders for ergodic flows”, J. Anal. Math., 122 (2014), 163–227
-
A. M. Vershik, “The theory of filtrations of subalgebras, standardness, and independence”, Russian Math. Surveys, 72:2 (2017), 257–333
-
A. M. Vershik, P. B. Zatitskii, “Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph”, Funct. Anal. Appl., 52:4 (2018), 258–269
-
Kanigowski A., Hertz F.R., Vinhage K., “On the Non-Equivalence of the Bernoulli and K Properties in Dimension Four”, J. Mod. Dyn., 13 (2018), 221–250
|
Number of views: |
This page: | 283 | Full text: | 99 | References: | 44 | First page: | 3 |
|