RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1998, Volume 62, Issue 2, Pages 193–224 (Mi izv180)  

This article is cited in 8 scientific papers (total in 8 papers)

A boundary-value problem for hyperbolic equations

S. D. Troitskaya


Abstract: The purpose of this paper is to study the following boundary-value problem for a hyperbolic equation with two independent variables: find the solution of this equation satisfying the boundary conditions given on two smooth curves. The curves emanate from a common point and lie inside the characteristic angle with its vertex at this point.

DOI: https://doi.org/10.4213/im180

Full text: PDF file (2375 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1998, 62:2, 399–428

Bibliographic databases:

MSC: 35L20, 35Q35
Received: 24.11.1995

Citation: S. D. Troitskaya, “A boundary-value problem for hyperbolic equations”, Izv. RAN. Ser. Mat., 62:2 (1998), 193–224; Izv. Math., 62:2 (1998), 399–428

Citation in format AMSBIB
\Bibitem{Tro98}
\by S.~D.~Troitskaya
\paper A~boundary-value problem for hyperbolic equations
\jour Izv. RAN. Ser. Mat.
\yr 1998
\vol 62
\issue 2
\pages 193--224
\mathnet{http://mi.mathnet.ru/izv180}
\crossref{https://doi.org/10.4213/im180}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1623842}
\zmath{https://zbmath.org/?q=an:0916.35060}
\transl
\jour Izv. Math.
\yr 1998
\vol 62
\issue 2
\pages 399--428
\crossref{https://doi.org/10.1070/im1998v062n02ABEH000180}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000075630800008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747270124}


Linking options:
  • http://mi.mathnet.ru/eng/izv180
  • https://doi.org/10.4213/im180
  • http://mi.mathnet.ru/eng/izv/v62/i2/p193

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Erratum
    • Correction
      S. D. Troitskaya
      Izv. RAN. Ser. Mat., 1999, 63:2, 224


    This publication is cited in the following articles:
    1. Troitskaya S.D., “Behavior as t -> infinity of Solutions of a Problem in Mathematical Physics”, Russian Journal of Mathematical Physics, 17:3 (2010), 342–362  crossref  mathscinet  zmath  adsnasa  isi  scopus
    2. Troitskaya S.D., “The Construction of Exact Solutions of the Model Problem on Rotating Fluid in Domains with Angular Points”, Mosc. Univ. Phys. Bull., 65:6 (2010), 438–445  crossref  zmath  adsnasa  isi  elib  scopus
    3. Troitskaya S.D., “Solution Properties of a Model Problem on Oscillations of a Rotating Fluid in Domains with Angular Points”, Mosc. Univ. Phys. Bull., 65:6 (2010), 446–453  crossref  zmath  adsnasa  isi  elib  scopus
    4. Berikelashvili G., Jokhadze O., Kharibegashvili S., Midodashvili B., “Finite Difference Solution of a Nonlinear Klein-Gordon Equation With An External Source”, Math Comp, 80:274 (2011), 847–862  crossref  mathscinet  zmath  isi  scopus
    5. Jokhadze O., Kharibegashvili S., “On the Cauchy and Cauchy-Darboux Problems For Semilinear Wave Equations”, Georgian Math. J., 22:1 (2015), 81–104  crossref  mathscinet  zmath  isi  scopus
    6. Kharibegashvili S., Jokhadze O., “on a Zaremba Type Problem For Nonlinear Wave Equations in the Angular Domains”, Proc. A Razmadze Math. Inst., 167 (2015), 130–135  mathscinet  zmath  isi
    7. Kharibegashvili S.S., Jokhadze O.M., “On the solvability of a boundary value problem for nonlinear wave equations in angular domains”, Differ. Equ., 52:5 (2016), 644–666  crossref  mathscinet  zmath  isi  scopus
    8. Kharibegashvili S., Jokhadze O., “The Cauchy-Darboux Problem For Wave Equations With a Nonlinear Dissipative Term”, Mem. Differ. Equ. Math. Phys., 69 (2016), 53–75  mathscinet  zmath  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:270
    Full text:78
    References:37
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019