RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1977, Volume 41, Issue 2, Pages 325–333 (Mi izv1804)  

This article is cited in 1 scientific paper (total in 1 paper)

On interpolation sets for the algebra $R(X)$

K. Val'des Kastro, M. S. Mel'nikov


Abstract: In this paper a connection is established between the behavior of the series remainder
$$ R_n(z_m)=\sum_{k=n}^\infty2^k\gamma(A_k(z_m)\setminus X) $$
(where $A_k(z_m)$ is the annulus $\{1/2^{k+1}<|z-z_m|<1/2^k\}$, and $\gamma$ is analytic capacity) and the Gleason distance $d(z_m,z_0)$ in the algebra $R(X)$, as $z_m\to z_0$.
It is proved that if the compact set $X\subset\mathbf C$, $P$ is the set of all peak points of $R(X)$, $ż_m\}_{m=1}^\infty\subset X\setminus P$, and $z_m\to z_0$ as $m\to\infty$, then in order that $d(z_m,z_0)\to0$ as $m\to\infty$, it is necessary and sufficient that $R_n(z)\to0$ uniformly on the set $ż_m\}_{m=1}^\infty$ as $n\to\infty$.
This result is applied in the study of interpolation sets of the algebra $R(X)$.
Bibliography: 10 titles.

Full text: PDF file (758 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1977, 11:2, 308–316

Bibliographic databases:

UDC: 517.5
MSC: Primary 30A80, 30A98; Secondary 30A44
Received: 10.05.1976

Citation: K. Val'des Kastro, M. S. Mel'nikov, “On interpolation sets for the algebra $R(X)$”, Izv. Akad. Nauk SSSR Ser. Mat., 41:2 (1977), 325–333; Math. USSR-Izv., 11:2 (1977), 308–316

Citation in format AMSBIB
\Bibitem{ValMel77}
\by K.~Val'des Kastro, M.~S.~Mel'nikov
\paper On interpolation sets for the algebra~$R(X)$
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1977
\vol 41
\issue 2
\pages 325--333
\mathnet{http://mi.mathnet.ru/izv1804}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=499175}
\zmath{https://zbmath.org/?q=an:0357.46057|0378.46046}
\transl
\jour Math. USSR-Izv.
\yr 1977
\vol 11
\issue 2
\pages 308--316
\crossref{https://doi.org/10.1070/IM1977v011n02ABEH001716}


Linking options:
  • http://mi.mathnet.ru/eng/izv1804
  • http://mi.mathnet.ru/eng/izv/v41/i2/p325

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. S. Mel'nikov, “A criterion for points to belong to the same Gleason part of the algebra $R(X)$”, Math. USSR-Izv., 11:5 (1977), 1109–1117  mathnet  crossref  mathscinet  zmath
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:155
    Full text:47
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020