RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1975, Volume 39, Issue 2, Pages 259–271 (Mi izv1829)  

This article is cited in 2 scientific papers (total in 2 papers)

On $p$-closed algebraic number fields with restricted ramification

O. Neumann


Abstract: Normal extensions $K$ of a given number field $k$, which are unramified outside a given set $S$ of divisors and are for a fixed prime $p$ closed under $p$-extensions, are considered in the paper. It is assumed that $S$ contains all Archimedean places and all prime divisors of $p$. The cohomology group $H^2(K/k, Z/pZ)$is described, and it is proved that the cohomological $p$-dimension of the Galois group $K/k$ does not exceed 2.
Bibliography: 9 items.

Full text: PDF file (1052 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1975, 9:2, 243–254

Bibliographic databases:

UDC: 511
MSC: 12A60
Received: 22.03.1974

Citation: O. Neumann, “On $p$-closed algebraic number fields with restricted ramification”, Izv. Akad. Nauk SSSR Ser. Mat., 39:2 (1975), 259–271; Math. USSR-Izv., 9:2 (1975), 243–254

Citation in format AMSBIB
\Bibitem{Neu75}
\by O.~Neumann
\paper On $p$-closed algebraic number fields with restricted ramification
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1975
\vol 39
\issue 2
\pages 259--271
\mathnet{http://mi.mathnet.ru/izv1829}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=371859}
\zmath{https://zbmath.org/?q=an:0352.12011}
\transl
\jour Math. USSR-Izv.
\yr 1975
\vol 9
\issue 2
\pages 243--254
\crossref{https://doi.org/10.1070/IM1975v009n02ABEH001475}


Linking options:
  • http://mi.mathnet.ru/eng/izv1829
  • http://mi.mathnet.ru/eng/izv/v39/i2/p259

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Schmidt A., “An arithmetic site for the rings of integers of algebraic number fields”, Invent math, 123:1 (1996), 575–610  crossref  mathscinet  zmath  isi  elib
    2. Alexander Schmidt, “An arithmetic site for the rings of integers of algebraic number fields”, Invent math, 123:3 (1996), 575  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:171
    Full text:61
    References:22
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020