|
This article is cited in 29 scientific papers (total in 29 papers)
On Kummer surfaces
V. V. Nikulin
Abstract:
In this paper we show that a Kähler $K3$ surface containing 16 nonsingular rational curves which do not intersect one another is a Kummer surface. We also give a direct proof of the global Torelli theorem for Kummer surfaces and develop a criterion for a surface to be Kummer which refines the criterion in the paper “A Torelli theorem for algebraic $K3$ surfaces” by I. I. Pyatetskii-Shapiro and I. R. Shafarevich.
Bibliography: 8 items.
Full text:
PDF file (1458 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1975, 9:2, 261–275
Bibliographic databases:
UDC:
513.6
MSC: Primary 14J10; Secondary 14J25 Received: 26.04.1974
Citation:
V. V. Nikulin, “On Kummer surfaces”, Izv. Akad. Nauk SSSR Ser. Mat., 39:2 (1975), 278–293; Math. USSR-Izv., 9:2 (1975), 261–275
Citation in format AMSBIB
\Bibitem{Nik75}
\by V.~V.~Nikulin
\paper On Kummer surfaces
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1975
\vol 39
\issue 2
\pages 278--293
\mathnet{http://mi.mathnet.ru/izv1831}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=429917}
\zmath{https://zbmath.org/?q=an:0312.14008}
\transl
\jour Math. USSR-Izv.
\yr 1975
\vol 9
\issue 2
\pages 261--275
\crossref{https://doi.org/10.1070/IM1975v009n02ABEH001477}
Linking options:
http://mi.mathnet.ru/eng/izv1831 http://mi.mathnet.ru/eng/izv/v39/i2/p278
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Looijenga E. Peters C., “Torelli Theorems for Kahler K3 Surfaces”, Compos. Math., 42:2 (1980), 145–186
-
Yoichi Miyaoka, “The maximal number of quotient singularities on surfaces with given numerical invariants”, Math Ann, 268:2 (1984), 159
-
Eduard Looijenga, Jonathan Wahl, “Quadratic functions and smoothing surface singularities”, Topology, 25:3 (1986), 261
-
Daniel Naie, “Surfaces d'Enriques et une construction de surfaces de type général avecp
g
=0”, Math Z, 215:1 (1994), 269
-
W. Barth, Th. Bauer, “Smooth quartic surfaces with 352 conics”, manuscripta math, 85:1 (1994), 409
-
Bernd Jakob, “Poncelet 5-gons and abelian surfaces”, manuscripta math, 83:1 (1994), 183
-
Daniel Ruberman, “Configurations of 2-spheres in the K3 surface and other 4-manifolds”, Math Proc Camb Phil Soc, 120:2 (1996), 247
-
I. A. Cheltsov, “Bounded three-dimensional Fano varieties of integer index”, Math. Notes, 66:3 (1999), 360–365
-
K. Hulek, I. Nieto, G. K. Sankaran, “Heisenberg-invariant kummer surfaces”, Proc Edin Math Soc, 43:2 (2000), 425
-
J. Keum, D.-Q. Zhang, “Fundamental groups of open K3 surfaces, Enriques surfaces and Fano 3-folds”, Journal of Pure and Applied Algebra, 170:1 (2002), 67
-
Kharlamov V., “Overview of topological properties of real algebraic surfaces”, Algebraic Geometry and Geometric Modeling, Mathematics and Visualization, 2006, 103–117
-
Paolo Stellari, “Derived categories and Kummer varieties”, Math Z, 256:2 (2007), 425
-
Vijay Kumar, Washington Taylor, “Freedom and constraints in the K3 landscape”, J High Energy Phys, 2009:5 (2009), 066
-
A. Kumar, “K3 Surfaces Associated with Curves of Genus Two”, Internat Math Res Notices, 2010
-
Kristina Frantzen, “Classification of K3-surfaces with involution and maximal symplectic symmetry”, Math Ann, 2010
-
Adrian Clingher, Charles F. Doran, “Lattice polarized K3 surfaces and Siegel modular forms”, Advances in Mathematics, 231:1 (2012), 172
-
A. Taormina, K. Wendland, “The overarching finite symmetry group of Kummer surfaces in the Mathieu group M 24”, J. High Energ. Phys, 2013:8 (2013)
-
V. V. Nikulin, “Kählerian K3 surfaces and Niemeier lattices. I”, Izv. Math., 77:5 (2013), 954–997
-
Lei Zhang, “Surfaces with
$$p_g = q= 1$$ p g = q = 1 , $$K^2 = 7$$ K 2 = 7 and non-birational bicanonical maps”, Geom Dedicata, 2014 -
V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups”, Izv. Math., 79:4 (2015), 740–794
-
Cheng M.C.N., Harrison S., “Umbral Moonshine and K3 Surfaces”, Commun. Math. Phys., 339:1 (2015), 221–261
-
V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. II”, Izv. Math., 80:2 (2016), 359–402
-
Garbagnati A., Sarti A., “Kummer surfaces and K3 surfaces with $(\mathbb{Z} /2\mathbb{Z} )^4$ symplectic action”, Rocky Mt. J. Math., 46:4 (2016), 1141–1205
-
V. V. Nikulin, “Classification of Picard lattices of K3 surfaces”, Izv. Math., 82:4 (2018), 752–816
-
Schaffler L., “K3 Surfaces With Z(2)(2) Symplectic Action”, Rocky Mt. J. Math., 48:7 (2018), 2347–2383
-
V. A. Krasnov, “Real Kummer surfaces”, Izv. Math., 83:1 (2019), 65–103
-
Roulleau X., Sarti A., “Construction of Nikulin Configurations on Some Kummer Surfaces and Applications”, Math. Ann., 373:1-2 (2019), 597–623
-
V. V. Nikulin, “Classification of degenerations and Picard lattices of Kählerian
K3 surfaces with symplectic automorphism group $D_6$”, Izv. Math., 83:6 (2019), 1201–1233
-
Viacheslav V. Nikulin, “Classification of Degenerations and Picard Lattices of Kählerian K3 Surfaces with Symplectic Automorphism Group $C_4$”, Proc. Steklov Inst. Math., 307 (2019), 130–161
|
Number of views: |
This page: | 744 | Full text: | 371 | References: | 42 | First page: | 1 |
|