RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1977, Volume 41, Issue 4, Pages 794–828 (Mi izv1868)  

This article is cited in 6 scientific papers (total in 6 papers)

Duality in an infinite cyclic covering and even-dimensional knots

M. Sh. Farber


Abstract: Pairings are constructed defined on the torsion subgroups of the integral homology groups of the infinite cyclic covering of a compact manifold with values in the factor group of the rationals modulo the integers. This gives invariants of even-dimensional knots, with the help of which three problems of R. H. Fox about two-dimensional knots in four-dimensional space are solved.
Bibliography: 25 titles.

Full text: PDF file (3391 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1977, 11:4, 749–781

Bibliographic databases:

UDC: 513.83
MSC: 57C45
Received: 03.10.1975

Citation: M. Sh. Farber, “Duality in an infinite cyclic covering and even-dimensional knots”, Izv. Akad. Nauk SSSR Ser. Mat., 41:4 (1977), 794–828; Math. USSR-Izv., 11:4 (1977), 749–781

Citation in format AMSBIB
\Bibitem{Far77}
\by M.~Sh.~Farber
\paper Duality in an infinite cyclic covering and even-dimensional knots
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1977
\vol 41
\issue 4
\pages 794--828
\mathnet{http://mi.mathnet.ru/izv1868}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=515677}
\zmath{https://zbmath.org/?q=an:0366.55003}
\transl
\jour Math. USSR-Izv.
\yr 1977
\vol 11
\issue 4
\pages 749--781
\crossref{https://doi.org/10.1070/IM1977v011n04ABEH001744}


Linking options:
  • http://mi.mathnet.ru/eng/izv1868
  • http://mi.mathnet.ru/eng/izv/v41/i4/p794

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. Sh. Farber, “Classification of certain higher-dimensional knots of codimension two”, Russian Math. Surveys, 35:3 (1980), 123–130  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. Jonathan A. Hillman, “Finite knot modules and the factorization of certain simple knots”, Math Ann, 257:2 (1981), 261  crossref  mathscinet  zmath  isi
    3. M. Sh. Farber, “Classification of stable fibered knots”, Math. USSR-Sb., 43:2 (1982), 199–234  mathnet  crossref  mathscinet  zmath
    4. M. Sh. Farber, “The classification of simple knots”, Russian Math. Surveys, 38:5 (1983), 63–117  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    5. Jonathan A. Hillman, “Abelian normal subgroups of two-knot groups”, Comment Math Helv, 61:1 (1986), 122  crossref  mathscinet  zmath  isi
    6. EIJI OGASA, “RIBBON-MOVES OF 2-KNOTS: THE TORSION LINKING PAIRING AND THE $\tilde{\eta}$-INVARIANTS OF 2-KNOTS”, J. Knot Theor. Rev, 16:5 (2007), 523  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:209
    Full text:66
    References:41
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020