RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1978, Volume 42, Issue 5, Pages 1162–1178 (Mi izv1947)  

This article is cited in 7 scientific papers (total in 7 papers)

Infinite-dimensional compact Hausdorff spaces

V. V. Fedorchuk


Abstract: Various types of infinite dimensionality of compact Hausdorff spaces are studied. In particular, it is shown that the classes of compact Hausdorff spaces for which the small and the large transfinite dimensions are defined coincide. An example, giving a negative solution of Aleksandrov's problem on the coincidence of countable dimensionality and weak infinite dimensionality in the class of compact Hausdorff spaces, is constructed.
Bibliography: 19 titles.

Full text: PDF file (1959 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1979, 13:2, 445–460

Bibliographic databases:

UDC: 513.88
MSC: Primary 54F45, 54D30; Secondary 54C10, 54D10, 54B25, 18B99
Received: 27.10.1977

Citation: V. V. Fedorchuk, “Infinite-dimensional compact Hausdorff spaces”, Izv. Akad. Nauk SSSR Ser. Mat., 42:5 (1978), 1162–1178; Math. USSR-Izv., 13:2 (1979), 445–460

Citation in format AMSBIB
\Bibitem{Fed78}
\by V.~V.~Fedorchuk
\paper Infinite-dimensional compact Hausdorff spaces
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1978
\vol 42
\issue 5
\pages 1162--1178
\mathnet{http://mi.mathnet.ru/izv1947}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=513919}
\zmath{https://zbmath.org/?q=an:0423.54024}
\transl
\jour Math. USSR-Izv.
\yr 1979
\vol 13
\issue 2
\pages 445--460
\crossref{https://doi.org/10.1070/IM1979v013n02ABEH002061}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1979JD23800013}


Linking options:
  • http://mi.mathnet.ru/eng/izv1947
  • http://mi.mathnet.ru/eng/izv/v42/i5/p1162

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Fedorchuk, “The method of scannable spectra and fully closed maps in general topology”, Russian Math. Surveys, 35:3 (1980), 131–143  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. V. A. Chatyrko, “Weakly infinite-dimensional spaces”, Russian Math. Surveys, 46:3 (1991), 191–210  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. V. V. Fedorchuk, “The Urysohn identity and dimension of manifolds”, Russian Math. Surveys, 53:5 (1998), 937–974  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. V. V. Fedorchuk, “On some problems of topological dimension theory”, Russian Math. Surveys, 57:2 (2002), 361–398  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. V. V. Fedorchuk, “Fully closed mappings and their applications”, J. Math. Sci., 136:5 (2006), 4201–4292  mathnet  crossref  mathscinet  zmath  elib  elib
    6. V. V. Fedorchuk, “Weakly infinite-dimensional spaces”, Russian Math. Surveys, 62:2 (2007), 323–374  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. V. V. Fedorchuk, “Dimension scales of bicompacta”, Siberian Math. J., 49:3 (2008), 549–561  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:234
    Full text:72
    References:44
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020