RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1998, Volume 62, Issue 4, Pages 51–80 (Mi izv196)  

This article is cited in 4 scientific papers (total in 4 papers)

Real algebraic GM$\mathbb Z$-surfaces

V. A. Krasnov

P. G. Demidov Yaroslavl State University

Abstract: We prove necessary and sufficient conditions for a real algebraic surface to be a $\operatorname{GM}\mathbb Z$-surface. We calculate the Neron–Severi group $\operatorname{NS}(X)$, the Brauer group $\operatorname{Br}(X)$ and the algebraic cohomology group $H_a^1(X(\mathbb R),\mathbb F_2)$, where $X$ is a real projective surface. We also prove Nikulin's congruence for an arbitrary orientable $M$-surface

DOI: https://doi.org/10.4213/im196

Full text: PDF file (2050 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1998, 62:4, 695–721

Bibliographic databases:

MSC: 14P25
Received: 20.11.1996

Citation: V. A. Krasnov, “Real algebraic GM$\mathbb Z$-surfaces”, Izv. RAN. Ser. Mat., 62:4 (1998), 51–80; Izv. Math., 62:4 (1998), 695–721

Citation in format AMSBIB
\Bibitem{Kra98}
\by V.~A.~Krasnov
\paper Real algebraic GM$\mathbb Z$-surfaces
\jour Izv. RAN. Ser. Mat.
\yr 1998
\vol 62
\issue 4
\pages 51--80
\mathnet{http://mi.mathnet.ru/izv196}
\crossref{https://doi.org/10.4213/im196}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1660154}
\zmath{https://zbmath.org/?q=an:0931.14034}
\transl
\jour Izv. Math.
\yr 1998
\vol 62
\issue 4
\pages 695--721
\crossref{https://doi.org/10.1070/im1998v062n04ABEH000196}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000077562500003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747960391}


Linking options:
  • http://mi.mathnet.ru/eng/izv196
  • https://doi.org/10.4213/im196
  • http://mi.mathnet.ru/eng/izv/v62/i4/p51

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Krasnov, “The etale and equivariant cohomology of a real algebraic variety”, Izv. Math., 62:5 (1998), 1013–1034  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. V. A. Krasnov, “Analogues of the Harnack–Thom inequality for a real algebraic surface”, Izv. Math., 64:5 (2000), 915–937  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. A. Krasnov, “The Nikulin Congruence for Four-Dimensional $M$-Varieties”, Math. Notes, 76:2 (2004), 191–199  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. V. A. Krasnov, “On the Algebraic Cohomology of Real Algebraic $M$-Varieties”, Math. Notes, 76:6 (2004), 796–809  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:184
    Full text:64
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019