Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1998, Volume 62, Issue 4, Pages 51–80 (Mi izv196)  

This article is cited in 4 scientific papers (total in 4 papers)

Real algebraic GM$\mathbb Z$-surfaces

V. A. Krasnov

P. G. Demidov Yaroslavl State University

Abstract: We prove necessary and sufficient conditions for a real algebraic surface to be a $\operatorname{GM}\mathbb Z$-surface. We calculate the Neron–Severi group $\operatorname{NS}(X)$, the Brauer group $\operatorname{Br}(X)$ and the algebraic cohomology group $H_a^1(X(\mathbb R),\mathbb F_2)$, where $X$ is a real projective surface. We also prove Nikulin's congruence for an arbitrary orientable $M$-surface

DOI: https://doi.org/10.4213/im196

Full text: PDF file (2050 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1998, 62:4, 695–721

Bibliographic databases:

MSC: 14P25
Received: 20.11.1996

Citation: V. A. Krasnov, “Real algebraic GM$\mathbb Z$-surfaces”, Izv. RAN. Ser. Mat., 62:4 (1998), 51–80; Izv. Math., 62:4 (1998), 695–721

Citation in format AMSBIB
\Bibitem{Kra98}
\by V.~A.~Krasnov
\paper Real algebraic GM$\mathbb Z$-surfaces
\jour Izv. RAN. Ser. Mat.
\yr 1998
\vol 62
\issue 4
\pages 51--80
\mathnet{http://mi.mathnet.ru/izv196}
\crossref{https://doi.org/10.4213/im196}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1660154}
\zmath{https://zbmath.org/?q=an:0931.14034}
\transl
\jour Izv. Math.
\yr 1998
\vol 62
\issue 4
\pages 695--721
\crossref{https://doi.org/10.1070/im1998v062n04ABEH000196}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000077562500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747960391}


Linking options:
  • http://mi.mathnet.ru/eng/izv196
  • https://doi.org/10.4213/im196
  • http://mi.mathnet.ru/eng/izv/v62/i4/p51

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Krasnov, “The etale and equivariant cohomology of a real algebraic variety”, Izv. Math., 62:5 (1998), 1013–1034  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. V. A. Krasnov, “Analogues of the Harnack–Thom inequality for a real algebraic surface”, Izv. Math., 64:5 (2000), 915–937  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. A. Krasnov, “The Nikulin Congruence for Four-Dimensional $M$-Varieties”, Math. Notes, 76:2 (2004), 191–199  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. V. A. Krasnov, “On the Algebraic Cohomology of Real Algebraic $M$-Varieties”, Math. Notes, 76:6 (2004), 796–809  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:208
    Full text:84
    References:36
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021