|
This article is cited in 9 scientific papers (total in 9 papers)
The intermediate Jacobian of the double covering of $P^3$ branched at a quartic
A. S. Tikhomirov
Abstract:
In this paper we study the intermediate Jacobian $J_3(X)$ of a double covering $X$ of $P^3$ branched at a smooth quartic which does not contain projective lines. We prove an analogue of the Riemann theorem for the Poincare's divisor of the intermediate Jacobian $J_3(X)$, the global Torelli theorem for $X$, and the nonrationality of $X$.
Bibliography: 13 titles.
Full text:
PDF file (4508 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1981, 17:3, 523–566
Bibliographic databases:
UDC:
512.776
MSC: Primary 14E20, 14J30, 14K30; Secondary 14J15, 14J25, 14C30, 14E22, 14E35, 14M20, 14N05, 3 Received: 23.04.1980
Citation:
A. S. Tikhomirov, “The intermediate Jacobian of the double covering of $P^3$ branched at a quartic”, Izv. Akad. Nauk SSSR Ser. Mat., 44:6 (1980), 1329–1377; Math. USSR-Izv., 17:3 (1981), 523–566
Citation in format AMSBIB
\Bibitem{Tik80}
\by A.~S.~Tikhomirov
\paper The intermediate Jacobian of the double covering of $P^3$ branched at a~quartic
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1980
\vol 44
\issue 6
\pages 1329--1377
\mathnet{http://mi.mathnet.ru/izv1966}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=603580}
\zmath{https://zbmath.org/?q=an:0476.14017|0455.14025}
\transl
\jour Math. USSR-Izv.
\yr 1981
\vol 17
\issue 3
\pages 523--566
\crossref{https://doi.org/10.1070/IM1981v017n03ABEH001371}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1981NK82000005}
Linking options:
http://mi.mathnet.ru/eng/izv1966 http://mi.mathnet.ru/eng/izv/v44/i6/p1329
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Erratum
This publication is cited in the following articles:
-
A. S. Tikhomirov, “The Fano surface of the Veronese double cone”, Math. USSR-Izv., 19:2 (1982), 377–443
-
D. G. Markushevich, “Numerical invariants of families of lines on some Fano varieties”, Math. USSR-Sb., 44:2 (1983), 239–260
-
A. S. Tikhomirov, “Singularities of the theta divisor of the intermediate Jacobian of a double cover of $P^3$ of index two”, Math. USSR-Izv., 21:2 (1983), 355–373
-
I. A. Cheltsov, “Birationally superrigid cyclic triple spaces”, Izv. Math., 68:6 (2004), 1229–1275
-
V. V. Przyjalkowski, I. A. Cheltsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. Math., 69:2 (2005), 365–421
-
A. V. Pukhlikov, “Birationally rigid varieties. I. Fano varieties”, Russian Math. Surveys, 62:5 (2007), 857–942
-
A. V. Pukhlikov, “Birational geometry of Fano double spaces of index two”, Izv. Math., 74:5 (2010), 925–991
-
A. V. Pukhlikov, “Birational geometry of higher-dimensional Fano varieties”, Proc. Steklov Inst. Math., 288, suppl. 2 (2015), S1–S150
-
Marcello Bernardara, Gonçalo Tabuada, “From semi-orthogonal decompositions to polarized intermediate Jacobians via Jacobians of noncommutative motives”, Mosc. Math. J., 16:2 (2016), 205–235
|
Number of views: |
This page: | 234 | Full text: | 68 | References: | 18 | First page: | 1 |
|