RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2009, Volume 73, Issue 3, Pages 151–182 (Mi izv1969)  

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems under continuous passage from a definite problem to an indefinite one

D. A. Popov

A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University

Abstract: We consider the problem of the spectrum of a parameter-dependent family of periodic Sturm–Liouville problems for the equation $u"+\lambda^2(g(x)-a)u=0$, where $a\in\mathbb R$ is the parameter of the family and $\lambda$ is the spectral parameter. It is assumed that $g\colon\mathbb R\to\mathbb R$ is a sufficiently smooth $2\pi$-periodic function with one simple maximum $g(x_{\max})= a_1>0$ and one simple minimum $g(x_{\min})=a_2>0$ over a period, and that the functions $g(x-x_{\min})$ and $g(x-x_{\max})$ are even. Under these assumptions, the first two asymptotic terms are calculated explicitly for the positive eigenvalues on the whole interval $0\le a<a_1$, including the neighbourhoods of the points $a=a_1$ and $a=a_2$. For $\lambda\gg1$, it is shown that the spectrum consists of two branches $\lambda=\lambda_{\pm}(a,p)$, indexed by the signs $\pm$ and by an integer $p\in\mathbb Z^+$, $p\gg1$. A unified interpolation formula is derived to describe the asymptotic behaviour of the spectrum branches in the passage from the definite (classical) problem with $a<a_2$ to the indefinite problem with $a>a_2$.

Keywords: definite and indefinite Sturm–Liouville problems, asymptotic behaviour of the spectrum, turning points.

DOI: https://doi.org/10.4213/im1969

Full text: PDF file (706 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2009, 73:3, 579–610

Bibliographic databases:

UDC: 517.927.25
MSC: 11F72, 34B24, 34C10, 34D05, 34E05, 34E20, 34E99, 34L10, 34L15, 35P05, 41A60, 46C20, 46N50, 46N99, 47A10, 47A15, 47B50, 58J50, 81Q50
Received: 26.10.2006

Citation: D. A. Popov, “Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems under continuous passage from a definite problem to an indefinite one”, Izv. RAN. Ser. Mat., 73:3 (2009), 151–182; Izv. Math., 73:3 (2009), 579–610

Citation in format AMSBIB
\Bibitem{Pop09}
\by D.~A.~Popov
\paper Asymptotic behaviour of the positive spectrum of a~family of~periodic Sturm--Liouville problems
under continuous passage from a~definite problem to an indefinite one
\jour Izv. RAN. Ser. Mat.
\yr 2009
\vol 73
\issue 3
\pages 151--182
\mathnet{http://mi.mathnet.ru/izv1969}
\crossref{https://doi.org/10.4213/im1969}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2553091}
\zmath{https://zbmath.org/?q=an:05585451}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..579P}
\elib{http://elibrary.ru/item.asp?id=20358683}
\transl
\jour Izv. Math.
\yr 2009
\vol 73
\issue 3
\pages 579--610
\crossref{https://doi.org/10.1070/IM2009v073n03ABEH002457}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000268622900005}
\elib{http://elibrary.ru/item.asp?id=15308916}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350639324}


Linking options:
  • http://mi.mathnet.ru/eng/izv1969
  • https://doi.org/10.4213/im1969
  • http://mi.mathnet.ru/eng/izv/v73/i3/p151

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. A. Popov, “On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains”, Izv. Math., 75:5 (2011), 1007–1045  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:389
    Full text:85
    References:61
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019