RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1998, Volume 62, Issue 3, Pages 87–120 (Mi izv201)  

This article is cited in 3 scientific papers (total in 3 papers)

Calculation of Hirzebruch genera for manifolds acted on by the group $\mathbf Z/p$ via invariants of the action

T. E. Panov

Moscow Power Engineering Institute (Technical University)

Abstract: We obtain general formulae expressing Hirzebruch genera of a manifold with $\mathbf Z/p$-action in terms of invariants of this action (the sets of weights of fixed points). As an illustration, we consider numerous particular cases of well-known genera, in particular, the elliptic genus. We also describe the connection with the so-called Conner–Floyd equations for the weights of fixed points.

DOI: https://doi.org/10.4213/im201

Full text: PDF file (2209 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1998, 62:3, 515–548

Bibliographic databases:

MSC: 57R20, 58G10
Received: 07.05.1997

Citation: T. E. Panov, “Calculation of Hirzebruch genera for manifolds acted on by the group $\mathbf Z/p$ via invariants of the action”, Izv. RAN. Ser. Mat., 62:3 (1998), 87–120; Izv. Math., 62:3 (1998), 515–548

Citation in format AMSBIB
\Bibitem{Pan98}
\by T.~E.~Panov
\paper Calculation of Hirzebruch genera for manifolds acted on by the group $\mathbf Z/p$ via invariants of the action
\jour Izv. RAN. Ser. Mat.
\yr 1998
\vol 62
\issue 3
\pages 87--120
\mathnet{http://mi.mathnet.ru/izv201}
\crossref{https://doi.org/10.4213/im201}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1642164}
\zmath{https://zbmath.org/?q=an:0926.57028}
\transl
\jour Izv. Math.
\yr 1998
\vol 62
\issue 3
\pages 515--548
\crossref{https://doi.org/10.1070/im1998v062n03ABEH000201}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000076753000004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747258401}


Linking options:
  • http://mi.mathnet.ru/eng/izv201
  • https://doi.org/10.4213/im201
  • http://mi.mathnet.ru/eng/izv/v62/i3/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. V. Sobolev, “Action of Cyclic Groups on Fano 3-Folds”, Math. Notes, 68:5 (2000), 672–674  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Buchstaber V., Panov T., Ray N., “Toric Genera”, International Mathematics Research Notices, 2010, no. 16, 3207–3262  mathscinet  zmath  isi  elib
    3. V. M. Buchstaber, “Complex cobordism and formal groups”, Russian Math. Surveys, 67:5 (2012), 891–950  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:282
    Full text:89
    References:29
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019