|
This article is cited in 4 scientific papers (total in 4 papers)
A Newtonian iteration process
I. N. Blinov
Abstract:
A general Newtonian iteration scheme is proposed which permits one to solve many nonlinear problems, including problems with small denominators.
Full text:
PDF file (889 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1969, 3:1, 1–11
Bibliographic databases:
UDC:
517.9
MSC: 65F10, 65L20, 34L30, 58D10 Received: 18.03.1967
Citation:
I. N. Blinov, “A Newtonian iteration process”, Izv. Akad. Nauk SSSR Ser. Mat., 33:1 (1969), 3–14; Math. USSR-Izv., 3:1 (1969), 1–11
Citation in format AMSBIB
\Bibitem{Bli69}
\by I.~N.~Blinov
\paper A~Newtonian iteration process
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1969
\vol 33
\issue 1
\pages 3--14
\mathnet{http://mi.mathnet.ru/izv2020}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=242344}
\zmath{https://zbmath.org/?q=an:0194.47301}
\transl
\jour Math. USSR-Izv.
\yr 1969
\vol 3
\issue 1
\pages 1--11
\crossref{https://doi.org/10.1070/IM1969v003n01ABEH000741}
Linking options:
http://mi.mathnet.ru/eng/izv2020 http://mi.mathnet.ru/eng/izv/v33/i1/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
I. N. Blinov, “The effect of vanishing of almost periodic solutions for a nonlinear diffusion equation with quasiperiodic coefficients”, Math. USSR-Izv., 21:3 (1983), 601–608
-
I. N. Blinov, “$B$-algebra of almost-periodic functions”, Funct. Anal. Appl., 16:4 (1982), 288–289
-
I. N. Blinov, “The direct method, reducibility”, Math. USSR-Izv., 36:1 (1991), 211–222
-
V. S. Pronkin, “On quasiperiodic solutions of the matrix Riccati equation”, Russian Acad. Sci. Izv. Math., 43:3 (1994), 455–470
|
Number of views: |
This page: | 238 | Full text: | 79 | References: | 39 | First page: | 3 |
|