RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1969, Volume 33, Issue 1, Pages 3–14 (Mi izv2020)  

This article is cited in 4 scientific papers (total in 4 papers)

A Newtonian iteration process

I. N. Blinov


Abstract: A general Newtonian iteration scheme is proposed which permits one to solve many nonlinear problems, including problems with small denominators.

Full text: PDF file (889 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1969, 3:1, 1–11

Bibliographic databases:

UDC: 517.9
MSC: 65F10, 65L20, 34L30, 58D10
Received: 18.03.1967

Citation: I. N. Blinov, “A Newtonian iteration process”, Izv. Akad. Nauk SSSR Ser. Mat., 33:1 (1969), 3–14; Math. USSR-Izv., 3:1 (1969), 1–11

Citation in format AMSBIB
\Bibitem{Bli69}
\by I.~N.~Blinov
\paper A~Newtonian iteration process
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1969
\vol 33
\issue 1
\pages 3--14
\mathnet{http://mi.mathnet.ru/izv2020}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=242344}
\zmath{https://zbmath.org/?q=an:0194.47301}
\transl
\jour Math. USSR-Izv.
\yr 1969
\vol 3
\issue 1
\pages 1--11
\crossref{https://doi.org/10.1070/IM1969v003n01ABEH000741}


Linking options:
  • http://mi.mathnet.ru/eng/izv2020
  • http://mi.mathnet.ru/eng/izv/v33/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. N. Blinov, “The effect of vanishing of almost periodic solutions for a nonlinear diffusion equation with quasiperiodic coefficients”, Math. USSR-Izv., 21:3 (1983), 601–608  mathnet  crossref  mathscinet  zmath
    2. I. N. Blinov, “$B$-algebra of almost-periodic functions”, Funct. Anal. Appl., 16:4 (1982), 288–289  mathnet  crossref  mathscinet  zmath  isi
    3. I. N. Blinov, “The direct method, reducibility”, Math. USSR-Izv., 36:1 (1991), 211–222  mathnet  crossref  mathscinet  zmath  adsnasa
    4. V. S. Pronkin, “On quasiperiodic solutions of the matrix Riccati equation”, Russian Acad. Sci. Izv. Math., 43:3 (1994), 455–470  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:238
    Full text:79
    References:39
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019