RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1969, Volume 33, Issue 1, Pages 65–89 (Mi izv2028)  

This article is cited in 11 scientific papers (total in 11 papers)

Finitely generated modules over a dyad of two local Dedekind rings, and finite groups with an Abelian normal divisor of index $p$.

L. A. Nazarova, A. V. Roiter


Abstract: We give a classification of finite modules over the integral group ring of a prime order cyclic group, and of finite groups with an abelian normal divisor of index $p$.

Full text: PDF file (2730 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1978, 3:1, 65–86

Bibliographic databases:

UDC: 519.4
MSC: 20C05, 20K01, 20K10, 20C10
Received: 20.03.1968

Citation: L. A. Nazarova, A. V. Roiter, “Finitely generated modules over a dyad of two local Dedekind rings, and finite groups with an Abelian normal divisor of index $p$.”, Izv. Akad. Nauk SSSR Ser. Mat., 33:1 (1969), 65–89; Math. USSR-Izv., 3:1 (1978), 65–86

Citation in format AMSBIB
\Bibitem{NazRoi69}
\by L.~A.~Nazarova, A.~V.~Roiter
\paper Finitely generated modules over a dyad of two local Dedekind rings, and finite groups with an Abelian normal divisor of index~$p$.
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1969
\vol 33
\issue 1
\pages 65--89
\mathnet{http://mi.mathnet.ru/izv2028}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=260859}
\zmath{https://zbmath.org/?q=an:0195.04301|0207.04803}
\transl
\jour Math. USSR-Izv.
\yr 1978
\vol 3
\issue 1
\pages 65--86
\crossref{https://doi.org/10.1070/IM1969v003n01ABEH000748}


Linking options:
  • http://mi.mathnet.ru/eng/izv2028
  • http://mi.mathnet.ru/eng/izv/v33/i1/p65

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. A. Drozd, V. V. Kirichenko, “On quasi-Bass orders”, Math. USSR-Izv., 6:2 (1972), 323–365  mathnet  crossref  mathscinet  zmath
    2. P. M. Gudivok, “On the number of indecomposable integral $p$-adic representations of crossed group rings”, Math. USSR-Sb., 20:1 (1973), 27–51  mathnet  crossref  mathscinet  zmath
    3. L. A. Nazarova, “Representations of quivers of infinite type”, Math. USSR-Izv., 7:4 (1973), 749–792  mathnet  crossref  mathscinet  zmath
    4. V. M. Bondarenko, “Representations of dihedral groups over a field of characteristic 2”, Math. USSR-Sb., 25:1 (1975), 58–68  mathnet  crossref  mathscinet  zmath
    5. Lawrence S Levy, “Mixed modules over ZG, G cyclic of prime order, and over related Dedekind pullbacks”, Journal of Algebra, 71:1 (1981), 62  crossref
    6. V. V. Kirichenko, “Classification of pairs of mutually annihilating operators in a graded space and representations of the diad of generalized uniserial algebras”, J Math Sci, 37:2 (1987), 977  mathnet  crossref  zmath
    7. A. V. Yakovlev, “To the memory of Andrei Vladimirovich Roiter”, J. Math. Sci. (N. Y.), 145:1 (2007), 4831–4835  mathnet  crossref  mathscinet  zmath  elib
    8. Jack Spielberg, “Non-cyclotomic presentations of modules and prime-order automorphisms of Kirchberg algebras”, crll, 2007:613 (2007), 211  crossref  mathscinet  zmath  isi
    9. Vitalij M. Bondarenko, Tatiana G. Gerasimova, Vladimir V. Sergeichuk, “Pairs of mutually annihilating operators”, Linear Algebra and its Applications, 430:1 (2009), 86  crossref
    10. Reza Ebrahimi Atani, Shahabaddin Ebrahimi Atani, “On primarily multiplication modules over pullback rings”, Algebra Discrete Math., 11:2 (2011), 1–17  mathnet  mathscinet  zmath
    11. D.M.. Arnold, Adolf Mader, Otto Mutzbauer, Ebru Solak, “Indecomposable (1,3)-Groups and a matrix problem”, Czech Math J, 63:2 (2013), 307  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:1163
    Full text:80
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019