RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1971, Volume 35, Issue 3, Pages 667–681 (Mi izv2031)  

This article is cited in 5 scientific papers (total in 5 papers)

Bott periodicity from the point of view of an $n$-dimensional Dirichlet functional

A. T. Fomenko


Abstract: The paper investigates topological effects associated with an $n$-dimensional Dirichlet functional on spaces of representations of disks with fixed boundaries in compact Lie groups $U(n)$, $O(n)$ or $S_p(n)$. It turns out that the classical Bott periodicity arises naturally when one considers the set of points at which the Dirichlet functional attains an absolute minimum, and the periodicity isomorphism is obtained using this approach “in one step” and not in several steps as it was the case when the one-dimensional action functional on the space of loops was used.

Full text: PDF file (1696 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1971, 5:3, 681–695

Bibliographic databases:

UDC: 513.83
MSC: Primary 49F15; Secondary 58E05
Received: 26.08.1970

Citation: A. T. Fomenko, “Bott periodicity from the point of view of an $n$-dimensional Dirichlet functional”, Izv. Akad. Nauk SSSR Ser. Mat., 35:3 (1971), 667–681; Math. USSR-Izv., 5:3 (1971), 681–695

Citation in format AMSBIB
\Bibitem{Fom71}
\by A.~T.~Fomenko
\paper Bott periodicity from the point of view of an $n$-dimensional Dirichlet functional
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1971
\vol 35
\issue 3
\pages 667--681
\mathnet{http://mi.mathnet.ru/izv2031}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=293673}
\zmath{https://zbmath.org/?q=an:0223.58007}
\transl
\jour Math. USSR-Izv.
\yr 1971
\vol 5
\issue 3
\pages 681--695
\crossref{https://doi.org/10.1070/IM1971v005n03ABEH001101}


Linking options:
  • http://mi.mathnet.ru/eng/izv2031
  • http://mi.mathnet.ru/eng/izv/v35/i3/p667

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. A. Aminov, “On the instability of a minimal surface in an $n$-dimensional Riemannian space of positive curvature”, Math. USSR-Sb., 29:3 (1976), 359–375  mathnet  crossref  mathscinet  zmath  isi
    2. A. T. Fomenko, “Multi-dimensional variational methods in the topology of extremals”, Russian Math. Surveys, 36:6 (1981), 127–165  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. A. V. Tyrin, “On the absence of local minima in the multi-dimensional Dirichlet functional”, Russian Math. Surveys, 39:2 (1984), 207–208  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. A. V. Tyrin, “Critical points of the multidimensional Dirichlet functional”, Math. USSR-Sb., 52:1 (1985), 141–153  mathnet  crossref  mathscinet
    5. A. A. Tuzhilin, “Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$”, Math. USSR-Izv., 38:3 (1992), 575–598  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:514
    Full text:147
    References:38
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020