RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1975, Volume 39, Issue 3, Pages 566–609 (Mi izv2042)  

This article is cited in 6 scientific papers (total in 6 papers)

Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group

V. L. Popov


Abstract: In this article, we find all irreducible three-dimensional affine algebraic varieties that admit a quasi-transitive algebraic group of biregular automorphisms (that is, there is an orbit under the group action whose complement has dimension at most zero). The ground field is algebraically closed and has characteristic zero.
Bibliography: 29 items.

Full text: PDF file (4665 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1975, 9:3, 535–576

Bibliographic databases:

UDC: 519.4
MSC: Primary 14J10; Secondary 14L10, 20G20, 20G05, 57A10
Received: 15.11.1974

Citation: V. L. Popov, “Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group”, Izv. Akad. Nauk SSSR Ser. Mat., 39:3 (1975), 566–609; Math. USSR-Izv., 9:3 (1975), 535–576

Citation in format AMSBIB
\Bibitem{Pop75}
\by V.~L.~Popov
\paper Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1975
\vol 39
\issue 3
\pages 566--609
\mathnet{http://mi.mathnet.ru/izv2042}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=376702}
\zmath{https://zbmath.org/?q=an:0308.14009}
\transl
\jour Math. USSR-Izv.
\yr 1975
\vol 9
\issue 3
\pages 535--576
\crossref{https://doi.org/10.1070/IM1975v009n03ABEH001490}


Linking options:
  • http://mi.mathnet.ru/eng/izv2042
  • http://mi.mathnet.ru/eng/izv/v39/i3/p566

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. N. Akhiezer, “Dense orbits with two ends”, Math. USSR-Izv., 11:2 (1977), 293–307  mathnet  crossref  mathscinet  zmath
    2. D. I. Panyushev, “Semisimple automorphism groups of four-dimensional affine space”, Math. USSR-Izv., 23:1 (1984), 171–183  mathnet  crossref  mathscinet  zmath
    3. Hanspeter Kraft, Vladimir L. Popov, “Semisimple group actions on the three dimensional affine space are linear”, Comment Math Helv, 60:1 (1985), 466  crossref  mathscinet  zmath  isi  elib
    4. V. L. Popov, “Closed orbits of Borel subgroups”, Math. USSR-Sb., 63:2 (1989), 375–392  mathnet  crossref  mathscinet  zmath
    5. V. L. Popov, “On polynomial automorphisms of affine spaces”, Izv. Math., 65:3 (2001), 569–587  mathnet  crossref  crossref  mathscinet  zmath  elib
    6. Kishimoto T. Prokhorov Yu. Zaidenberg M., “Group Actions on Affine Cones”, Affine Algebraic Geometry: the Russell Festschrift, CRM Proceedings & Lecture Notes, 54, ed. Daigle D. Ganong R. Koras M., Amer Mathematical Soc, 2011, 123–163  isi
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:246
    Full text:69
    References:20
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019