|
Integral points on curves of genus $p>1$
A. I. Lapin
Abstract:
In this paper we disprove a conjecture of C. L. Siegel on the uniform boundedness of the number of integral points on hyperelliptic curves of given genus and defined over a function field.
Full text:
PDF file (505 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1971, 5:4, 770–776
Bibliographic databases:
UDC:
513.61
MSC: Primary 10B15, 14G99; Secondary 14H05 Received: 27.08.1970
Citation:
A. I. Lapin, “Integral points on curves of genus $p>1$”, Izv. Akad. Nauk SSSR Ser. Mat., 35:4 (1971), 754–761; Math. USSR-Izv., 5:4 (1971), 770–776
Citation in format AMSBIB
\Bibitem{Lap71}
\by A.~I.~Lapin
\paper Integral points on curves of genus~$p>1$
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1971
\vol 35
\issue 4
\pages 754--761
\mathnet{http://mi.mathnet.ru/izv2050}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=289515}
\zmath{https://zbmath.org/?q=an:0223.14014}
\transl
\jour Math. USSR-Izv.
\yr 1971
\vol 5
\issue 4
\pages 770--776
\crossref{https://doi.org/10.1070/IM1971v005n04ABEH001115}
Linking options:
http://mi.mathnet.ru/eng/izv2050 http://mi.mathnet.ru/eng/izv/v35/i4/p754
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 216 | Full text: | 87 | References: | 38 | First page: | 1 |
|