|
This article is cited in 4 scientific papers (total in 4 papers)
Approximation of functions by algebraic polynomials in the $L_p$ metric
V. P. Motornyi
Abstract:
We introduce a new method of approximation of nonperiodic functions by algebraic polynomials. In particular, by this method we establish necessary and sufficient conditions for a function on the interval $[-1,1]$ to satisfy Hölder's condition in the $L_p$ metric.
Full text:
PDF file (1706 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1971, 5:4, 889–914
Bibliographic databases:
UDC:
517.51
MSC: Primary 41A10; Secondary 41A25 Received: 30.07.1970
Citation:
V. P. Motornyi, “Approximation of functions by algebraic polynomials in the $L_p$ metric”, Izv. Akad. Nauk SSSR Ser. Mat., 35:4 (1971), 874–899; Math. USSR-Izv., 5:4 (1971), 889–914
Citation in format AMSBIB
\Bibitem{Mot71}
\by V.~P.~Motornyi
\paper Approximation of functions by algebraic polynomials in the $L_p$ metric
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1971
\vol 35
\issue 4
\pages 874--899
\mathnet{http://mi.mathnet.ru/izv2062}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=288467}
\zmath{https://zbmath.org/?q=an:0224.41002}
\transl
\jour Math. USSR-Izv.
\yr 1971
\vol 5
\issue 4
\pages 889--914
\crossref{https://doi.org/10.1070/IM1971v005n04ABEH001122}
Linking options:
http://mi.mathnet.ru/eng/izv2062 http://mi.mathnet.ru/eng/izv/v35/i4/p874
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. P. Motornyi, “On the mean convergence of Fourier series in Legendre polynomials”, Math. USSR-Izv., 7:1 (1973), 131–144
-
V. M. Badkov, “Approximation properties of Fourier series in orthogonal polynomials”, Russian Math. Surveys, 33:4 (1978), 53–117
-
N. P. Korneichuk, “S. M. Nikol'skii and the development of research on approximation theory in the USSR”, Russian Math. Surveys, 40:5 (1985), 83–156
-
V. P. Motornyi, “On the Nikol'skii and Potapov classes of functions”, Proc. Steklov Inst. Math., 293 (2016), 216–227
|
Number of views: |
This page: | 316 | Full text: | 136 | References: | 41 | First page: | 3 |
|